System, method and article of manufacture for remote...

Electrical computers and digital processing systems: multicomput – Remote data accessing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S218000, C380S202000, C380S229000

Reexamination Certificate

active

06529949

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to remote control of content stored locally on a client device such as a computer or set top box connected to a network system, and more particularly to remote control of DVD Video content on such a device.
BACKGROUND OF THE INVENTION
Multimedia computer systems have become increasingly popular over the last several years due to their versatility and their interactive presentation style. A multimedia computer system can be defined as a computer system having a combination of video and audio outputs for presentation of audio-visual displays. A modern multimedia computer system typically includes one or more storage devices such as an optical drive, a CD-ROM, a hard drive, a videodisc, or an audiodisc, and audio and video data are typically stored on one or more of these mass storage devices. In some file formats the audio and video are interleaved together in a single file, while in other formats the audio and video data are stored in different files, many times on different storage media. Audio and video data for a multimedia display may also be stored in separate computer systems that are networked together. In this instance, the computer system presenting the multimedia display would receive a portion of the necessary data from the other computer system via the network cabling.
Graphic images used in Windows multimedia applications can be created in either of two ways, these being bit-mapped images and vector-based images. Bit-mapped images comprise a plurality of picture elements (pixels) and are created by assigning a color to each pixel inside the image boundary. Most bit-mapped color images require one byte per pixel for storage, so large bit-mapped images create correspondingly large files. For example, a full-screen, 256-color image in 640-by-480-pixel VGA mode requires 307,200 bytes of storage, if the data is not compressed. Vector-based images are created by defining the end points, thickness, color, pattern and curvature of lines and solid objects comprised within the image. Thus, a vector-based image includes a definition which consists of a numerical representation of the coordinates of the object, referenced to a corner of the image.
Bit-mapped images are the most prevalent type of image storage format, and the most common bit-mapped-image file formats are as follows. A file format referred to as BMP is used for Windows bit-map files in 1-, 2-, 4-, 8-, and 24-bit color depths. BMP files contain a bit-map header that defines the size of the image, the number of color planes, the type of compression used (if any), and the palette used. The Windows DIB (device-independent bit-map) format is a variant of the BMP format that includes a color table defining the RGB (red green blue) values of the colors used. Other types of bit-map formats include the TIF (tagged image format file), the PCX (Zsoft Personal Computer Paintbrush Bitmap) file format, the GIF (graphics interchange file) format, and the TGA (Texas Instruments Graphic Architecture) file format.
The standard Windows format for bit-mapped images is a 256-color device-independent bit map (DIB) with a BMP (the Windows bit-mapped file format) or sometimes a DIB extension. The standard Windows format for vector-based images is referred to as WMF (Windows meta file).
Full-motion video implies that video images shown on the computer's screen simulate those of a television set with identical (30 frames-per-second) frame rates, and that these images are accompanied by high-quality stereo sound. A large amount of storage is required for high-resolution color images, not to mention a full-motion video sequence. For example, a single frame of NTSC video at 640-by-400-pixel resolution with 16-bit color requires 512K of data per frame. At 30 flames per second, over 15 Megabytes of data storage are required for each second of full motion video. Due to the large amount of storage required for full motion video, various types of video compression algorithms are used to reduce the amount of necessary storage. Video compression can be performed either in real-time, i.e., on the fly during video capture, or on the stored video file after the video data has been captured and stored on the media. In addition, different video compression methods exist for still graphic images and for full-motion video.
Examples of video data compression for still graphic images are RLE (run-length encoding) and JPEG (Joint Photographic Experts Group) compression. RLE is the standard compression method for Windows BMP and DIB files. The RLE compression method operates by testing for duplicated pixels in a single line of the bit map and stores the number of consecutive duplicate pixels rather than the data for the pixel itself. JPEG compression is a group of related standards that provide either lossless (no image quality degradation) or lossy (imperceptible to severe degradation) compression types. Although JPEG compression was designed for the compression of still images rather than video, several manufacturers supply JPEG compression adapter cards for motion video applications.
In contrast to compression algorithms for still images, most video compression algorithms are designed to compress full motion video. Video compression algorithms for motion video generally use a concept referred to as interframe compression, which involves storing only the differences between successive frames in the data file. Interframe compression begins by digitizing the entire image of a key frame. Successive frames are compared with the key frame, and only the differences between the digitized data from the key frame and from the successive frames are stored. Periodically, such as when new scenes are displayed, new key frames are digitized and stored, and subsequent comparisons begin from this new reference point. It is noted that interframe compression ratios are content-dependent, i.e., if the video clip being compressed includes many abrupt scene transitions from one image to another, the compression is less efficient. Examples of video compression which use an interframe compression technique are MPEG, DVI and MPEG (Moving Pictures Experts Group) compression is a set of methods for compression and decompression of full motion video images that uses the interframe compression technique described above. The MPEG standard requires that sound be recorded simultaneously with the video data, and the video and audio data are interleaved in a single file to attempt to maintain the video and audio synchronized during playback. The audio data is typically compressed as well, and the MPEG standard specifies an audio compression method referred to as ADPCM (Adaptive Differential Pulse Code Modulation) for audio data.
A standard referred to as Digital Video Interactive (DVI) format developed by Intel Corporation is a compression and storage format for full-motion video and high-fidelity audio data. The DVI standard uses interframe compression techniques similar to that of the MPEG standard and uses ADPCM compression for audio data. The compression method used in DVI is referred to as RTV 2.0 (real time video), and this compression method is incorporated into Intel's AVK (audio/video kernel) software for its DVI product line. IBM has adopted DVI as the standard for displaying video for its Ultimedia product line. The DVI file format is based on the Intel i750 chipset and is supported through the Media Control Interface (MCI) for Windows. Microsoft and Intel jointly announced the creation of the DV MCI (digital video media control interface) command set for Windows 3.1 in 1992.
The Microsoft Audio Video Interleaved (AVI) format is a special compressed file structure format designed to enable video images and synchronized sound stored on CD-ROMs to be played on PCs with standard VGA displays and audio adapter cards. The AVI compression method uses an interframe method, i.e., the differences between successive frames are stored in a manner similar to the compression methods used in DVI and MPEG. The AVI format uses sym

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System, method and article of manufacture for remote... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System, method and article of manufacture for remote..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System, method and article of manufacture for remote... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3012740

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.