Aeronautics and astronautics – Aircraft sustentation – Sustaining airfoils
Reexamination Certificate
2000-09-21
2002-12-10
Barefoot, Galen L. (Department: 3644)
Aeronautics and astronautics
Aircraft sustentation
Sustaining airfoils
C244S075100
Reexamination Certificate
active
06491262
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to systems for producing adjustable surface contours, such as for control surfaces for aircraft, and more particularly, to a system that produces a variable surface contour of a compliant, continuous surface.
2. Description of the Related Art
A need for surfaces having an adjustable or variable contour is present in a wide variety of applications, ranging from aircraft control surfaces to specialized furniture. Absent the ability to vary the surface contour in any, such application results in the creation of products and systems that are not optimally designed, but instead are configured as compromises between conflicting design goals. In the case of airfoils for aircraft, it is known that overall drag results from the combination of friction between the airfoil and the air flowing therearound, and the lift component of force supplied to an aircraft wing. In such an application, innumerable variations can be effected between airfoil thickness, airfoil camber, airfoil length and width, and the like. The conventional airfoil, therefore, is but the implementation of an engineering compromise to effect an acceptable lift:drag ratio, which is a primary flight control parameter. There is a need, therefore, for an arrangement that enables advantageous variation in the shape of an airfoil and the contour of the associated control surfaces.
There is a need for an arrangement for varying the dimensions and contours of airfoils, such as aircraft wings, so as to optimize same for different flight conditions Thus, for example, the wing configuration that would be optimum for stable, undisturbed flight, would be different from the wing configuration that would be optimized during take-off and landing: It would additionally be advantageous if the contour of the airfoil is adjusted in a manner that is not constant throughout the length of the airfoil, but which varies, illustratively to form a twist along the control surface of the wing. There is a need for optimizing the configuration and contour of such surfaces in other applications, such as in hydrofoils for water craft and spoilers for high speed land vehicles.
In addition to the foregoing, there is a need for a system that affords advantageous variation of a surface contour for applications unrelated to airfoils, hydrofoils, spoilers,.and the like. Such other applications may include, for example, adjustable seating surfaces, including back supports as well as fluid passageways, the dimensions of which are desired to be varied, such as an air intake passageway for an engine of a vehicle.
It is, therefore, an object of this invention to provide a simple and economical arrangement for varying a contour of a surface.
It is also an object of this invention to provide an airfoil having an adjustable configuration.
SUMMARY OF THE INVENTION
The foregoing and other objects are achieved by this invention which provides in a first apparatus aspect thereof an arrangement for producing a variable contour of a compliant surface. In accordance with the invention there is provided a compliant frame member having a predetermined contour arranged to communicate with the compliant surface. An actuator element is arranged in predetermined first relation with respect to the compliant frame member, and there is further provided at least one linkage member coupled at a first end thereof to the compliant frame member, and at a second end thereof to the actuator element. With this arrangement, displacement of the actuator element results in a corresponding displacement of the contour of the compliant frame member. The linkage element has a predetermined resilience characteristic.
In one embodiment, the predetermined resilience characteristic of said linkage element has a directional aspect. Such a directional aspect of the predetermined resilience characteristic can correspond to a resilient compression characteristic, and in other embodiments, to a resilient lateral deflection characteristic. A resilient lateral deflection characteristic would correspond to a resilient lateral beam load response.
In an advantageous embodiment of the invention, the compliant frame member, the actuator element, and the linkage element are integrally formed. In a further embodiment, the displacement of the actuator element is transmitted via the linkage element to produce a substantially orthogonal displacement of the compliant frame member. Thus, the displacement of the actuator element and the corresponding displacement of the compliant frame member are not necessarily in the same plane.
In a farther embodiment there is provided a plurality of further linkage elements, each coupled at a respective first end thereof to the compliant frame member at a predetermined location thereof The plurality of further linkage elements are each coupled at a second end thereof to the actuator element. Displacement of the actuator element results in a corresponding displacement of a contour of the compliant frame member. In embodiments where the actuator element has a determined configuration, the plurality of further linkage elements are each coupled at respective second ends thereof at predetermined locations of the actuator element. The actuator element may be displaced angularly to achieve a desired displacement of the compliant frame member and thereby achieve a predetermined corresponding displacement of the contour of the compliant frame member. Such angular displacement may be in the form of rotation in a direction parallel to the plane of the compliant frame member, or about an axis substantially parallel to that plane, whereby the actuator element is rotatable in a direction transverse to the plane of the compliant frame element.
In a further embodiment of the invention, there is provided a second actuator element coupled to the actuator element. An additional linkage element is coupled at a first end thereof to the compliant frame member at a predetermined location thereof, and at a second end thereof to the second actuator elements. In this manner, displacement of the second actuator element, in response to displacement of the actuator element, results in a determinable displacement of the contour of the compliant frame member, and consequently, achieves a desired change in the contour of the compliant surface. In one embodiment of the invention, a plurality of further linkage elements are each coupled at a respective first end thereof to the compliant frame member at a predetermined location thereof, and at a second end thereof to the actuator element. The linkage element and the further linkage elements have a determined compliance characteristic that enables transmission there along of a load to the compliant frame, whereby a rotatory displacement of the actuator element results in a corresponding displacement of the contour of the compliant frame member. In a further embodiment, the actuator element is displaced radially, and such radial displacement causes to be transmitted along the various linkage elements, in a manner that corresponds to their respective compliance characteristics, a load that is delivered to the compliant frame member.
As previously stated, the compliant surface, the contour of which advantageously is varied in accordance with the invention herein, is the surface of an airfoil. In such an embodiment, the airfoil is adjusted in its configuration to achieve optimization for a particular flight condition. However, the present invention provides advantages in airfoils that are not directly related to flight, such as effecting an effective deicing procedure of the surface of an airfoil. The advantageously adjustable surface contour of the present invention can be applied to the surface of a rotor blade of a rotary wing aircraft, or the surface of a hydrofoil. Also, the compliance surface can be arranged in an air inlet of an engine or other fluid passageway to effect desired fluid flow characteristics.
In accordance with a further apparatus aspect of the invention, there is
Barefoot Galen L.
Rohm & Monsanto, PLC
LandOfFree
System for varying a surface contour does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System for varying a surface contour, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for varying a surface contour will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2954001