Communications: electrical – Selective – Intelligence comparison for controlling
Reexamination Certificate
1999-08-30
2003-12-02
Horabik, Michael (Department: 2736)
Communications: electrical
Selective
Intelligence comparison for controlling
C340S870030, C342S357490, C455S012100, C307S010100
Reexamination Certificate
active
06657535
ABSTRACT:
BACKGROUND OF THE INVENTION
Systems which are able to locate a stolen vehicle after reporting a theft are commercially available. Invariably in such systems, the effort to locate a stolen vehicle starts from a telephone call from the owner of the stolen vehicle to a control center which sends out a “where are you located?” message to a module which is already installed in the vehicle to be protected. The module, by using its capability as a transmitter sends out signals to the control center regarding its location by using the assistance of a global position sensor or the like. There are yet other systems, which can be installed on a controlled device, e.g., a vehicle, with the capability of turning on/off a power supply with the use of a remote command signal.
SUMMARY OF THE INVENTION
The present invention is directed to a two-way paging system which offers improved functions, including but not limited to tracking, remote control, and anti-theft, and includes certain functions not offered in prior art systems. The present inventive system can be used as a protective system for protecting automobiles against theft, but it has applications beyond automobile theft protection. Such applications include remote monitoring of a physical condition, global position sensing in conjunction with tracking, and telemetry or remote reading of a physical parameter.
If indeed, the protection system is installed on an automobile or a portable unit which is reportedly stolen, and a control center were to initiate a switch to shut off the automobile which may be in motion on a highway, the consequences and the resulting liability could be of paramount magnitude. The present invention addresses this issue by checking the motion status of the vehicle before turning off power supply to the vehicle. Also, in hitherto known protection systems or tracking systems which use a protection module, generally, a query has to be initiated by either the owner of the protection module, or the query has to be initiated by the control center. If neither of the two situations happens and the owner is not aware of an undesirable situation in which the (protection) module is placed, in the absence of the control center initiating an interrogation or a query, no corrective action can be taken. Such situations are overcome in the present invention. In its simplest form, the invention resides in a method of providing vehicle security by using a module installed in the vehicle, and sensing a safe condition to stop the vehicle after the vehicle is known to be misappropriated. An embodiment of the invention described hereinafter includes a control station which may communicate with a communications host, and an end user module which is installed in a unit to be protected/tracked/monitored/controlled, the end user module having functional capabilities depending on the desired application.
If the end user module is installed in a unit which is intended to be protected against theft, for instance, the module can include a gyration sensing unit or a motion sensor depending on a design choice and the specific application. A gyration sensing unit which can be incorporated into the protector can take the form of a sensor which generates a signal responsive to a non-linear arcuate movement of the sensor. Preferably, such a gyration sensing unit should function as desired, independent of the spatial orientation thereof. If a tracking function is desired, the protector module can be provided, for instance, with a global positioning system (GPS) receiver which can operate with an averaging unit which computes an average reading from several selected consecutive position readings for a stationary unit location. Such an averaging unit would be desirable to even out small inherent inaccuracies in GPS-type location readings.
A given control station or base station may be called upon to communicate with several modules remotely located in the field. In such a case, each module has to be identified. To this end, in the present invention, each module has its own inherent identification number, which is the module security ID. The module security ID is verified in this invention by the control station before acknowledging data received from the module. Even though the retention of the module security ID without erasure is dependent on the uninterrupted availability of electrical power (which may be battery power) for the module, means may be provided, placed preferably in the protector module, to resynchronize the security ID when the power is restored after a failure of power supply. Also, preferably any communications between the customer and the control station are authenticated and protected by encryption. Additionally, any communication stream between the module and the control station (or database therein) is protected. Also, preferably, as described hereinafter, a time-varying algorithm which changes the password, say once every sixty (60) seconds, is used to enhance security. The module, if installed to protect an automobile against theft, for example, is referred to herein as a protector module.
The protector module power supply can be AC or from a battery pack or from solar panels on the protector module where the module is exposed to light. Furthermore, where the control station is trying to send a message to a remotely-located module, and where the protector module is shielded temporarily from receiving the control station's message, the present system can use its auto-recovery capability whereby the control station automatically tries to establish contact with the same protector module which was out of reach a short while ago. The protector module includes a suitable antenna (or antennae), as necessary, and may itself initiate contact with the control or base station when power is restored to the module or even otherwise, periodically as desired.
The present inventive system has various applications, which include, but are not limited to the following:
1. Theft control of automobiles and other valuable objects;
2. Remote lighting control or remote on/off control of an appliance or gadget;
3. Remote retrieval of information from a stolen laptop or computer;
4. Use as a modem;
5. Locate livestock or other animals which are suitably tagged;
6. Manage a heating system remotely;
7. Remote control of a manufacturing system from a control station without any control wiring from the control station; and
8. Track a customer's status at a remote location.
9. Track a stolen object which has been removed to a remote location.
10. Turn off ignition to a stolen automobile remotely, after ensuring that it is safe to turn off ignition.
The end user module of the inventive system may include the following:
1. Two-way paging system, e.g., a SkyTelo® paging unit;
2. GPS receiver;
3. Microprocessor based interface and memory;
4. Power supply, with options as to the type of power supply;
5. Several input/output options, such as a motion detector, on/off switches, digital I/O, analog I/O, I/O expansion, bus, keypad, display (e.g., LCD), status indicators, and serial comport; and
6. Sensor options such as temperature, pressure, vibration, mechanical stress, expansion/contraction, noise level, and wind velocity.
In one aspect, the invention resides in a method of providing vehicle security by stopping the vehicle in the event of misappropriation comprising: determining that the vehicle has been misappropriated; sensing a condition of the vehicle to determine a safe condition for stopping the vehicle; and stopping the vehicle dependent on the sensed condition.
In another aspect, the invention provides a method of controlling a device from a control station comprising: providing a controller on the device having an identification code; at both the control station and the device controller, varying a security code for the module through a time varying algorithm applied to the identification code; communicating from the central station to the device controller, a security code being provided in the communication; and responding at the de
Magbie L. Hugh
Mandry James E.
Prince Douglas W.
Hamilton Brook Smith & Reynolds P.C.
Hawkeye Global, Inc.
Horabik Michael
Shimizu M
LandOfFree
System for signaling a device at a remote location does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System for signaling a device at a remote location, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for signaling a device at a remote location will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3101804