System for setting coarse GPS time in a mobile station...

Communications: directive radio wave systems and devices (e.g. – Directive – Including a satellite

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S357490, C342S357490, C701S213000

Reexamination Certificate

active

06788249

ABSTRACT:

FIELD OF THE INVENTION
The present invention generally relates to position location systems that determine the position of a mobile station, such as a cellular phone, by use of wireless signals.
DESCRIPTION OF RELATED ART
Existing position location techniques based on global positioning system (GPS) satellites utilize a network of satellites, commonly known as space vehicles (SV's), that transmit signals that are accurately phase referenced to GPS time. A GPS receiver on the ground measures the relative times of arrival of the signals from each “in view” SV (i.e., each SV from which the receiver can receive signals). The relative times of arrival of the signals along with the exact location of the SVs are used to determine the position of the GPS receiver using a technique commonly known as trilateration. A relatively accurate estimate of GPS time at the time the signals were transmitted from each SV is required in order to accurately determine the location of each SV at the time the signals were transmitted. For example, the SV's motion relative to earth can be as much as 950 meters/sec. The location of the SV is calculated using a mathematical equation that predicts the location of an SV in its orbit at a particular point in time. Due to the velocity of the SV, a single millisecond of time error would equate to an SV position error of up to 0.95 meters. The resulting error in the calculated position of the GPS receiver may vary. However, a general rule of thumb is that one millisecond of time error will result in an error of about 0.5 meters in the calculated position of the GPS receiver.
In order to know the exact time that the signals were transmitted from the SVs, a standard GPS receiver either demodulates the time of transmission from the received signal or maintains a clock bias estimate that estimates the difference between the local receiver clock and GPS time. Establishing the time bias between the GPS receiver's free running clock and GPS time is often referred to as “setting the clock”. If the SV signal is received by the GPS receiver in good condition, then the GPS receiver can set the clock based on information contained in the received signal. The information received indicates the time of transmission. However, even in the best of conditions, setting the clock may consume considerable time (e.g. up to six seconds or more) due to the amount of time required to receive the necessary information transmitted by the SV. Furthermore, in environments in which the signal is blocked or otherwise weakened, the GPS receiver can never set the clock to GPS time, and therefore can never determine its position.
Another way to set the clock is to synchronize the clock with a reference clock that has a known relationship to GPS time. For example, synchronizing to GPS time is straightforward in a CDMA mobile station (MS) (such as a cellular phone) used in a CDMA network. This is because CDMA networks are synchronized to GPS time. Being synchronized to GPS time means that the transmissions from each of the base stations within the network are referenced to GPS time. Accordingly, the CDMA receiver in the MS has knowledge of GPS time. The operating software within the MS can simply transfer this GPS time to the GPS receiver software by, for example, relating the GPS time to a precise hardware signal or pulse which allows the GPS receiver software to associate the GPS time with its own clock time in a precise fashion. As discussed above, prior knowledge of precise GPS time inside the GPS receiver can significantly shorten the time needed to determine the location of a GPS receiver (commonly referred to as “obtaining a GPS fix”). Particularly in noisy environments, prior knowledge of precise GPS time may become important, or even essential in obtaining a GPS fix.
For quicker and more efficient determination of GPS fixes in CDMA systems, the Electronics Industry Association/Telecommunications Industry Association (EIA/TIA) adopted a standard known as the “IS-801 standard”, or simply “IS-801”. IS-801 includes a set of rules (commonly referred to as “protocols”). The protocols prescribe the data content and sequence of messages that can be exchanged between a position location server (commonly referred to as a PDE) and an MS. These IS-801 messages help the GPS receiver measure pseudoranges and/or generate location fixes. For example, IS-801 messages include requests for “ephemeris”. Ephemeris is information regarding the orbits of the SVs. IS-801 messages also include other aiding information, such as information regarding the bit patterns that the SVs are expected to send. Predicting the bits allows the GPS receiver to perform coherent integration over longer periods of time. This in turn increases the sensitivity of the GPS receiver.
However, some cellular networks, such as the Global System for Mobile Communication (GSM) networks, are not synchronized with GPS time. Such systems are referred to as “asynchronous”. Accordingly, the GPS receiver in an asynchronous network does not have direct access to GPS time from the communication signal. In the presence of noise or if the signals from the SVs are attenuated, a GPS system that does not have the luxury of attaining GPS time from the communication system may take longer to determine a GPS fix. In the extreme case, if there is too much noise, determining a GPS fix may become impossible. One method for determining GPS time in an asynchronous system is referred to as a “Pattern Match” method. In a Pattern Match method, the time at which GPS signals are received at the MS is compared with the time at which GPS signals are received at a reference receiver that is synchronized to GPS time. Assuming that the distance between the transmitting SV and the reference receiver is essentially equal to the distance between the transmitting SV and the GPS receiver, the time at which the signals are received by the reference receiver can be used to set the clock in the GPS receiver. However, since the information that is transmitted by the GPS SVs is repeated, effective operation of the Pattern Match method requires that the MS be “coarsely” synchronized with GPS time, for example to within a few seconds. Otherwise, it is impossible to tell whether the information received by the GPS receiver was transmitted at the same time as the information received by the reference receiver.
For example, assume that the same information is transmitted by a particular GPS SV every two seconds. Further assume that it is possible for the clock within the GPS receiver to be offset by as much as two seconds from the clock within the reference receiver. Now assume that both the clock within the reference receiver and the clock within the GPS receiver indicated that the information in question was received at exactly 12:00PM. Since we don't know what time the information was really received by the GPS receiver, it is possible that the information was actually received at 12:00PM, two seconds before 12:00PM, or two seconds after 12:00PM. That is, the information received by the GPS receiver might be information that was actually sent by the SV at the same time as the information received by the reference receiver, two seconds earlier, or two seconds later. Accordingly, there is no way of telling whether the clocks in the reference receiver and the MS are perfectly synchronized or out of synchronization by two seconds.
The coarse time synchronization ensures that the clock within the MS is synchronized to GPS time with sufficient accuracy to ensure that the pattern match method can determine the exact time without ambiguity. Several methods are known for establishing coarse time synchronization. In one method, a transmit and acknowledge pair of messages are used. For example, the MS transmits a request for time and simultaneously starts a local timer. The BTS receives the request from the MS and acknowledges receipt of the request by sending the current time. The MS receives the time estimate from the BTS. The MS then stops the local timer and reads the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System for setting coarse GPS time in a mobile station... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System for setting coarse GPS time in a mobile station..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for setting coarse GPS time in a mobile station... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3237740

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.