Data processing: generic control systems or specific application – Specific application – apparatus or process – Article handling
Reexamination Certificate
2002-12-02
2003-08-19
Tran, Khoi H. (Department: 3651)
Data processing: generic control systems or specific application
Specific application, apparatus or process
Article handling
Reexamination Certificate
active
06609046
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to automated data storage libraries having robotic mechanisms for manipulating media objects within the storage libraries and, more particularly, to an automated data storage library method and system in which a robotic mechanism most suitable to perform a job is selected from a plurality of robotic mechanisms based on criteria stored in a criteria database.
2. Background Art
Existing automated media storage libraries are capable of storing and retrieving large quantities of information stored on media objects such as cartridges. This is accomplished by the use of a large number of cartridge storage cells, each of which houses a media cartridge, that are housed within an enclosure. Such storage libraries use a robotic mechanism (e.g., robot, picker, handbot, accessor, and the like) to move the media cartridges between their media cartridge storage cells and media cartridge players (e.g., a cartridge drive). For example, to retrieve information stored on a selected media cartridge, a robotic mechanism moves to a location opposite the media cartridge storage cell housing the selected media cartridge. An end effector of the robotic mechanism then grasps the media cartridge and extracts it from the media cartridge storage cell to a media cartridge player where the end effector loads the media cartridge into the media cartridge player.
As automated storage libraries have become larger and more complex, their designs have evolved from a single robotic arm performing all media cartridge manipulations to multiple robotic mechanisms operating independently on several media cartridges and media cartridge players simultaneously. The ability to manipulate several media cartridges simultaneously has increased the throughput of the automated storage libraries. While one robotic mechanism is busy transferring one media cartridge from a media cartridge storage cell for mounting into a media cartridge player, a second robotic mechanism can be transferring another media cartridge to an access port, while a third robotic mechanism may be conducting an inventory of the storage library.
A typical storage library includes tracks laid out throughout the storage library. Robotic mechanisms mount to the tracks to move throughout the storage library to access the media cartridges and the media cartridge players. A problem with typical automated storage libraries having multiple robotic mechanisms is that the redundancy resulting from multiple robotic mechanisms is not fully taken advantage of because the robotic mechanisms are not efficiently allocated to perform jobs. For instance, some storage libraries do not take into account any factors when assigning a robotic mechanism from a group of robotic mechanisms to perform a job within the storage library. These storage libraries do not acknowledge that a particular robotic mechanism may be best suited for the job while other robotic mechanisms may be ill suited. Other than basic position and availability information, typical storage libraries do not take into account the different factors associated with the redundancy resulting from many robotic mechanisms when selecting one of the robotic mechanisms to perform a job. In essence, typical automated storage libraries do not select a robotic mechanism from a group of robotic mechanisms for performing a job in the most detailed possible manner.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a method and system for selecting a robotic mechanism best suited to perform a job from multiple robotic mechanisms in an automated storage library.
It is another object of the present invention to provide an automated storage library method and system in which a robotic mechanism most suitable to perform a job is selected from a plurality of robotic mechanisms based on criteria stored in a criteria database.
It is a further object of the present invention to provide an automated storage library method and system having a criteria database which forms a decision algorithm based on different factors to select a robotic mechanism most suitable to perform a job from a plurality of robotic mechanisms.
It is still another object of the present invention to provide an automated storage library method and system which determines criteria associated with a job and then selects a robotic mechanism best suited to perform the job based on the determined criteria.
It is still a further object of the present invention to provide an automated storage library method and system which gathers inputs from host variables, internal storage library variables, operator variables, and manufacturer variables to form a decision algorithm used for selecting a robotic mechanism best suited to perform a job from a plurality of robotic mechanisms.
In carrying out the above objects and other objects, the present invention provides a method for operating an automated storage library having a plurality of robotic mechanisms, media objects, and media object players. The method includes gathering variables in a criteria database to form a decision algorithm. The variables include attributes of each of the plurality of robotic mechanisms, media objects, and media object players. Attributes of a job request are then transferred into the decision algorithm. The decision algorithm is then used to select a robotic mechanism best suited for performing the job request from the plurality of robotic mechanisms based on the attributes of each of the plurality of robotic mechanisms, media objects, and media object players and the attributes of the job request. The selected robotic mechanism is then controlled to perform the job request.
The variables may include host variables, internal storage library variables, storage library operator variables, and storage library manufacturer variables. The host variables may include information regarding at least one of job priority, job data set size, and job multi-cartridge data set size.
The internal storage library variables may include information regarding at least one of media object type, media object quantity, and media object position; information regarding at least one of media object player type, media object player quantity, and media object player position; information regarding at least one of robotic mechanism availability, and robotic mechanism proximity to media objects, media object players, and other robotic mechanisms; information regarding at least one of robotic mechanism age, robotic mechanism reliability, robotic mechanism condition, and robotic mechanism identification number (FRU level); and information regarding at least one of storage library guide track conditions, storage library environmental conditions, and storage library maintenance.
The operator variables may include information regarding time of day of operation of the storage library. The manufacturer variables may include information regarding storage library performance upgrades, marketing requirements, and special operator requirements.
In carrying out the above objects and other objects, the present invention further provides an automated storage library for the storage and retrieval of media objects. The storage library includes a frame having media object storage cells for storing media objects and at least one media object player for playing the media objects. The storage library further includes at least two robotic mechanisms each movable within the frame to mount a media object from a media object storage cell into the at least one media object player and to dismount a media object from the at least one media object player into a media object storage cell.
The storage library also includes a controller for gathering variables in a criteria database to form a decision algorithm. The variables include attributes of each of the robotic mechanisms, media objects, and media object players. The controller is operable for transferring attributes of a job request into the decision algorithm, and then
Ostwald Timothy C.
Ries James
Brooks & Kushman P.C.
Storage Technology Corporation
Tran Khoi H.
LandOfFree
System for selecting a robotic mechanism best suited to... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System for selecting a robotic mechanism best suited to..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for selecting a robotic mechanism best suited to... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3082276