System for rupturing microcapsules filled with a dye

Photocopying – Using microcapsules

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C355S405000, C355S406000, C400S120100

Reexamination Certificate

active

06417915

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an image-forming system for forming an image on an image-forming substrate, coated with a layer of microcapsules filled with dye or ink, by selectively breaking or squashing the microcapsules in the layer of microcapsules. Further, the present invention relates to such an image-forming substrate and an image-forming apparatus, which forms an image on the image-forming substrate, used in the image-forming system.
2. Description of the Related Art
An image-forming system per se is known, and uses an image-forming substrate coated with a layer of microcapsules filled with dye or ink, on which an image is formed by selectively breaking or squashing microcapsules in the layer of microcapsules.
For example, in a conventional image-forming system using an image-forming substrate coated with a layer of microcapsules in which a shell of each microcapsule is formed from a photo-setting resin, an optical image is formed as a latent image on the layer of microcapsules by exposing it with light rays in accordance with image-pixel signals. Then, the latent image is developed by exerting a pressure on the layer of microcapsules. Namely, the microcapsules, which are not exposed to the light rays, are broken and squashed, whereby dye or ink seeps out of the broken and squashed microcapsules, and thus the latent image is visually developed by the seepage of dye or ink.
Of course, in this conventional image-forming system, each of the image-forming substrates must be packed so as to be protected from being exposed to light, resulting in wastage materials. Further, the image-forming substrates must be handled such that they are not subjected to excess pressure due to the softness of unexposed microcapsules, resulting in an undesired seepage of dye or ink.
Also, a color-image-forming system, using an image-forming substrate coated with a layer of microcapsules filled with different color dyes or inks, is known. In this system, the respective different colors are selectively developed on an image-forming substrate by applying specific temperatures to the layer of color microcapsules. Nevertheless, it is necessary to fix a developed color by irradiation, using a light of a specific wavelength. Accordingly, this color-image-forming system is costly, because an additional irradiation apparatus for the fixing of a developed color is needed, and electric power consumption is increased due to the additional irradiation apparatus. Also, since a heating process for the color development and an irradiation process for the fixing of a developed color must be carried out with respect to each color, this hinders a quick formation of a color image on the color-image-forming substrate.
SUMMARY OF THE INVENTION
Therefore, an object of the present invention is to provide an image-forming system, using an image-forming substrate coated with a layer of microcapsules filled with dye or ink, in which an image can be quickly formed on the image-forming substrate at a low cost, without producing a large amount of waste material.
Another object of the present invention is to provide an image-forming substrate used in the image-forming system.
Yet another object of the present invention is to provide an image-forming apparatus used in the image-forming system.
In accordance with an aspect of the present invention, there is provided an image-forming system comprising an image-forming substrate that includes a base member, and a layer of microcapsules, coated over the base member, containing at least one type of microcapsules filled with a dye. A shell of wall of each of the microcapsules is formed of resin that exhibits a temperature/pressure characteristic such that, when each of the microcapsules is squashed under a predetermined pressure at a predetermined temperature, discharge of the dye from the squashed microcapsule occurs. The system further comprises an image-forming apparatus that forms an image on the image-forming substrate, and the image-forming apparatus includes a pressure applicator that locally exerts the predetermined pressure oh the layer of microcapsules, and a thermal heater that selectively heats a localized area of the layer of microcapsules, on which the predetermined pressure is exerted by the pressure applicator, to the predetermined temperature in accordance with an image-information data, such that the microcapsules in the layer of microcapsules are selectively squashed, and an image is produced on the layer of microcapsules.
In accordance with another aspect of the present invention, there is provided an image-forming system comprising an image-forming substrate that includes a base member, and a layer of microcapsules, coated over the base member, containing at least one type of microcapsules filled with a dye. A shell of wall of each of the microcapsules is formed of resin that exhibits a temperature/pressure characteristic such that, when each of the microcapsules is squashed under a predetermined pressure at a predetermined temperature, discharge of the dye from the squashed microcapsule occurs. The system further comprises an image-forming apparatus that forms an image on the image-forming substrate, and the image-forming apparatus includes an array of piezoelectric elements laterally aligned with each other with respect to a path along which the image-forming substrate passes. Each of the piezoelectric elements selectively generates an alternating pressure when being electrically energized by a high-frequency voltage, and the alternating pressure has an effective pressure value that corresponds to the predetermined pressure. The apparatus further includes a platen member that is in contact with the array of piezoelectric elements, and an array of heater elements provided on the respective piezoelectric elements included in the array of piezoelectric elements, each of the heater element being selectively heatable to the predetermined temperature.
In accordance with yet an aspect of the present invention, there is provided an image-forming system comprising an image-forming substrate that includes a base member, and a layer of microcapsules, coated over the base member, containing at least one type of microcapsules filled with a dye. A shell of wall of each of the microcapsules is formed of resin that exhibits a temperature/pressure characteristic such that, when each of the microcapsules is squashed under a predetermined pressure at a predetermined temperature, discharge of the dye from the squashed microcapsule occurs. The system further comprises an image-forming apparatus that forms an image on the image-forming substrate, and the image-forming apparatus includes a platen member laterally provided with respect to a path along which the image-forming substrate passes, a carriage that carries a thermal head, movable along the platen member, a resilient biasing unit incorporated in the carriage to press the thermal head against the platen member with the predetermined pressure, and a resilient biasing unit incorporated in the carriage to press the thermal head against the platen member with the predetermined pressure. The thermal head selectively heats a localized area of the layer of microcapsules, on which the predetermined pressure is exerted by the resilient biasing unit, to the predetermined temperature in accordance with an image information data, such that the microcapsules included in the layer of microcapsules are selectively squashed and an image is produced on the layer of microcapsules.
In accordance with still yet an aspect of the present invention, there is provided an image-forming substrate comprising a base member, and a layer of microcapsules, coated over the base member, containing at least one type of microcapsules filled with a dye, wherein a shell of wall of each of the microcapsules is formed of resin that exhibits a temperature/pressure characteristic such that, when each of the microcapsules is squashed under a predetermined pressure at a predetermined temperature, discharge of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System for rupturing microcapsules filled with a dye does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System for rupturing microcapsules filled with a dye, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for rupturing microcapsules filled with a dye will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2886001

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.