System for producing time-independent virtual camera...

Television – Special applications – Observation of or from a specific location

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06331871

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to the field of cinematography. More specifically, the present invention discloses a system for producing motion picture scenes that embody time-independent virtual camera movement. An array of specialized modular cameras simultaneously records photographic images of a scene and the resulting photographic images are placed in a motion picture medium and viewed in succession, conveying the illusion that a single camera has moved around a scene frozen in time.
STATEMENT OF THE PROBLEM
Presently, film directors wishing to convey a sense of time passing for the viewer of a scene while time appears stopped for the subject of the same scene, such as might be required in films with science-fiction themes, often find it desirable to freeze the action in the scene while recording the scene with a moving motion picture camera. Scenes so recorded convey the sense of time passing for the viewer, as is naturally inferred from the camera movement, while time appears stopped for the subject.
Freezing the scene artificially is generally done by making models of any subjects within the scene that would otherwise be in fluid motion and directing actors in the scene to freeze. This method of freezing a scene is obviously limited in scope by a number of factors, particularly if the scene is intended to contain dramatic action. Such factors include the model-maker's ability to portray objects such as fluid properties in motion and the actors' ability to pose without moving. This method is further limited if the scene is documentary in nature, if it involves extensive use of fluids, pyrotechnics, smoke, airborne objects, or other dynamic properties, or if one of the actors is a young child or an animal. In these latter cases, freezing the action artificially is often impossible.
Another, simpler, method of creating the illusion that time has stopped in a motion picture scene is the freeze-frame. The freeze-frame is an effect achieved by repeating a single frame of camera negative over a series of adjacent frames of a projection print. The resulting composite motion picture image contains absolutely no motion. The freeze-frame is used by some film directors to stop time, usually at a time in the motion picture after the viewer has become accustomed to the general motion and passage of time. By stopping time, the director allows the viewer to reflect on the events that lead up to the stopped moment, as well as the specific drama of that particular moment in time. The freeze-frame, however, is incapable of capturing camera movement, and therefore fails to convey the illusion that time has stopped for the subject of the motion picture but not for the viewer.
Although subjects have been photographed simultaneously throughout this century for the purpose of recording photographs in three dimensions (i.e., stereo photography), the prior art does not teach or suggest methods of simultaneous photography for the purpose of creating special time-stopping effects in otherwise conventional motion picture scenes. Nor does the prior art teach or suggest a system for producing virtual camera movement from a sequence of simultaneous still photographs.
Multiphotographic systems for producing three-dimensional images have been used in the past in a wide variety of other fields, including the following:
Inventor
Patent No.
Issue Date
Clay
3,225,651
Dec. 28, 1965
Glenn, Jr.
3,482,913
Dec. 9, 1969
Glenn, Jr.
3,508,920
Apr. 28, 1970
Glenn, Jr.
3,518,929
July 7, 1970
Matsunaga et al.
3,682,064
Aug. 8, 1972
Lo et al.
4,037,950
July 26,1977
Iwane
4,062,045
Dec. 6, 1977
Collender
4,158,487
June 19, 1979
Morioka
4,239,359
Dec. 16, 1980
Brooks
4,333,715
June 8, 1982
Montes
5,004,335
Apr. 2, 1991
Montes
5,013,147
May 7, 1991
Hoppenstein
5,049,987
Sep. 17, 1991
Hattori
5,223,925
June 29, 1993
Montes
5,237,353
Aug. 17, 1993
Clay, U.S. Pat. No. 3,225,651, discloses a method and apparatus for reproducing a panoramic scene as a three-dimensional image. A plurality of cameras are arranged so that their axes are slightly divergent, with each adjacent pair of cameras producing adjacent stereoscopic images. The images are projected on a special screen consisting of a number of horizontally adjacent viewing cells. The view appears to the audience as a three-dimensional panorama without the use by the audience of special glasses or other assistance.
Glenn, Jr., U.S. Pat. No. 3,482,913, discloses a method for composing and enlarging three-dimensional pictures using a number of projectors each of which is independently adjustable in position and in illumination to provide a high-quality three-dimensional picture.
Glenn, Jr., U.S. Pat. No. 3,508,920, discloses a method for printing high-resolution three-dimensional pictures by producing half-tone pictures in which the width of the half-tone dots is equal to the width of the picture elements and the length of the half-tone dots is several times their width.
Glenn, Jr., U.S. Pat. No. 3,518,929, discloses a camera for producing three-dimensional pictures having a plurality of camera units
11
with a common film spool shaft
21
and shutter drive
40
. Each camera unit
11
has its own film guide
19
, supply
27
, take-up
22
spools, and shutter
16
.
Matsunaga et al., U.S. Pat. No. 3,682,064, disclose an apparatus for stereographically photographing a scene using a plurality of cameras placed at diverse vantage points relative to the scene. The apparatus includes means for setting the shutter speed for each camera and for either synchronizing or delaying the starting time of the shutter for each camera.
Lo et al., U.S. Pat. No. 4,037,950, disclose a method and apparatus to determine and coordinate the variables that bear on the quality of a stereoscopic picture, such as the size of the picture, the distance between adjacent camera vantage points, the camera focal length and the distance from the camera to an element or object in the scene which is to lie in the plane of the picture.
Iwane, U.S. Pat. No. 4,062,045, describes a system for producing three-dimensional television images in which a plurality of television cameras are arranged side-by-side in a straight line or arc, and the pictures obtained from the cameras are connected to form an angular division distribution pattern from which a three-dimensional image is produced.
Collender, U.S. Pat. No. 4,158,487, shows a method and apparatus to display both stationary and moving stereoscopic pictures without the need for the observers to use viewing aids.
Morioka, U.S. Pat. No. 4,239,359, discloses a method by which an image of an object is projected on a mass to enable the mass to be sculpted into a replica of the original object.
Brooks, U.S. Pat. No. 4,333,715, discloses a display structure that can present either two-dimensional or three-dimensional images to a viewer by sequentially activating particular lamps or electrodes to illuminate certain images while leaving unactivated images unobservable. The effect of three-dimensional motion is achieved by sequentially illuminating layers of images in varying positions.
Montes, U.S. Pat. No. 5,004,335, shows an apparatus for projecting moving three-dimensional pictures in which the projecting surface emits each photon in a direction determined by the incidence of that photon on the surface. The images for projection are obtained by a series of motion-picture cameras placed adjacent to each other along a straight line.
Montes, U.S. Pat. No. 5,013,147, discloses an optical system for three-dimensional reproduction of images in which the images are obtained as described above for Pat. No. 5,004,335 and the images are displayed by projection on a screen consisting of one layer having vertical cylindrical lenses and a second layer having horizontal cylindrical lenses.
Hoppenstein, U.S. Pat. No. 5,049,987, discloses an apparatus for dividing a visual image into separate image strips, transmitting the separate strip images as a composite image, and recreating the visual image as a three-dimensional image by use of a lenticul

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System for producing time-independent virtual camera... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System for producing time-independent virtual camera..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for producing time-independent virtual camera... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2566011

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.