Telecommunications – Radiotelephone system – Zoned or cellular telephone system
Reexamination Certificate
1999-10-08
2004-11-30
Cumming, William (Department: 2683)
Telecommunications
Radiotelephone system
Zoned or cellular telephone system
C455S457000, C455S466000, C379S088230, C379S114020, C379S130000, C379S196000, C379S201010, C379S201040, C709S229000, C709S220000, C709S231000, C340S007220, C348S014080
Reexamination Certificate
active
06826398
ABSTRACT:
BACKGROUND OF THE INVENTION.
1. Field of the Invention
The invention relates to processing of telecommunications service data in a telecommunications network, particularly in an intelligent network.
In order to make the following description easier to understand, some terms used below will be defined first. A customer and a subscriber denote a person or a community that purchases a (intelligent network) service and uses it. A service provider or user denotes a person or a community that creates the service according to the requirements of the customer or the subscriber. An operator denotes a person or a community that operates a telecommunications network. A manufacturer denotes a person or a community that manufactures the hardware and software by means of which the operator or service provider creates the (intelligent network) service.
2. Description of the Related Art
In telecommunications networks, intelligence relates to the ability to access stored data, process it and make decisions on the basis of it. Present telecommunications networks, such as public switched telephone networks (PSTN), are intelligent to some extent since they are able to process stored data in connection with routing a call, for instance. A typical “intelligent” facility or service in the present telecommunications networks is a conditional call forwarding, which requires analysis of the call state and routing of the call onward according to the stored service profile of the call forwarding. Depending on the telecommunications system, these facilities and subscriber service profiles associated with them have been maintained in different network elements, such as subscriber databases in mobile communications networks.
However, intelligent facilities of this type have been an integral part of the primary network, whereby to alter the facilities or to increase the number of them has required, for instance, software updating in every network exchange. This is the reason for developing an intelligent network (IN). The intelligent network is a network architecture connected to the primary network, enabling faster, easier and more flexible service implementation and service control. This is performed by transferring the service control from the telephone exchange to a separate functional unit of the intelligent network. The services thus become independent of the primary network operation, and the primary network structure and software do not have to be changed when services are altered or added. In addition to the actual network operator, an intelligent network may comprise several service providers.
The intelligent network architecture can be applied to most telecommunications networks, such as public switched telephone networks (PSTN), packet switched public data networks (PSPDN) and integrated services digital networks (ISDN) and broadband-ISDNs (B-ISDN). Independently of the network technology, the purpose of the intelligent network architecture is to facilitate the creation, control and management of new teleservices.
In fixed networks, intelligent network standardization has progressed rapidly in recent years. For example, the CCITT Q.1290 and prETS 300 374-1, Intelligent Network Capability Set 1 (CS1) are specifications related to intelligent networks. These standards define a certain functional and hierarchical model for the intelligent network.
FIG. 1
illustrates the principle of the intelligent network and some of its components. The intelligent network also comprises other functional or physical units, which are not, however, significant as far as the present invention is concerned.
In the intelligent network model, service control has been transferred from the exchange of the primary network (SW) to a service control point (SCP) in the intelligent network. The SCP comprises the required database and service logic programs (SLP), in other words the software to provide the logic structure of a particular service (service logic). A service switching point (SSP) is an exchange, for instance a primary network exchange (SW) fulfilling the service switching function (SSF), in other words the identification of the intelligence network service and the triggering of interaction with the service control point (SCP).
FIG. 1
also shows the subscriber equipment (SE) of the primary network.
The functions related to the intelligent network service management are described below.
A service data point (SDP) comprises customer and network data used while performing a service. Functionally, the SDP comprises a service data function (SDF). It comprises data used by the service logic programs for providing individual services. The SCP or SMP/SMS has direct access to the SDP.
The service management point (SMP) or the service management system (SMS) performs service management control, service provision control and service deployment control. Examples of its functions are database management, network testing, network traffic management and network data collection. Functionally, the SMP comprises a service management function (SMF) and optionally, a service management access function (SMAF) and a service creation environment function (SCEF).
The service creation environment (SCEP) is employed to define, develop and test an intelligent network service and to input it to the SMP. Functionally, it comprises a service creation environment function (SCEF). The SCEP may interact directly with the SMP.
The service management access point (SMAP) provides some selected users, such as service managers and customers, with a connection to the SMP. Functionally, the SMAP comprises a service management access function (SMAF). The SMAP interacts directly with the SMP.
Subscription service data of intelligent networks has previously been managed through the customer data systems of the operator, or through the SMAP or by terminals or work stations connected directly to the SMP or the SMS of the intelligent network, such as work stations WS1 and WS2 in FIG.
1
. International PCT Applications WO9211724, WO9325035 and WO9405111, for instance, disclose examples of this sort of implementation.
With an increase in the use of the intelligent network services, the need for frequent updating of service related data has also increased. This has led to a growing load on the operator personnel and customer care systems when prior art solutions are employed. A need has thus arisen to allow external users, such as subscribers and service providers, to update their service data on a self-service basis. The prior art solutions are, however, unsuitable for this mainly for reasons of security, capacity and human resources.
SUMMARY OF THE INVENTION.
It is an object of the invention to provide the users and customers with the ability to input, view and update their service related data in a secure and controlled manner.
It is a further object of the invention to provide, within a management access system, the operators with an open interface enabling different service management and billing systems to be added flexibly.
This is achieved by a system for processing service data in network elements managing the telecommunications services of the telecommunications network. The system is characterized in that the system is connected to one or several network elements managing the telecommunications services, the system comprises an open protocol interface to a public data network, through which the customers and service providers are able to selectively access their service data in the telecommunications network.
The invention provides an access system separate from the actual network elements managing the telecommunications services, said system providing the customers and service providers with an open interface to these network elements through a public data network. Controlled by the access system of the invention, they can access their service data through this open interface in network elements managing the data. The access system of the invention and an interface open to use provide the customers and service providers with an opportunity to acc
Lagerström Lars
Riihinen Bodil
Cumming William
Nokia Corporation
Squire Sanders & Dempsey LLP
LandOfFree
System for processing service data in telecommunications system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System for processing service data in telecommunications system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for processing service data in telecommunications system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3344602