System for power generation

Power plants – Combustion products used as motive fluid – Multiple fluid-operated motors

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C060S039511

Reexamination Certificate

active

06263661

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a system for power generation. Such systems generally comprise a turbine system, comprising both gas turbines and steam turbines, and a power generating system. At present the efficiency of the best known systems for power generation is about 55-60%. In such systems for power generation there is a need to improve their performance and their efficiency. It is an object of the present invention to provide a system for power generation having an increased efficiency, in particular above 55% and more in particular 58-62%.
SUMMARY OF THE INVENTION
The invention therefore provides a system for power generation comprising a turbine system and a power generating system connected to said turbine system, wherein the turbine system comprises:
a) a compressor means connected with an inlet for oxygen-containing gas, an outlet for compressed oxygen-containing gas and an inlet means for supplying fluid to said compressor means for cooling the oxygen-containing gas;
b) a combustion means provided with a fuel inlet and a flue gas outlet, said combustion means being connected with the outlet for compressed oxygen-containing gas of the compressor means;
c) a gas turbine means connected with said flue gas outlet of the combustion means and being provided with an outlet for exhaust gases;
d) a recuperator means connected with the outlet for compressed oxygen-containing gas of the compressor means, and with the outlet for exhaust gases of the gas turbine means, for mutual heat exchange;
e) at least a means for at least partially condensing water from the exhaust gases from the gas turbine means, said means for condensing being connected with the outlet for exhaust gases of the gas turbine means and further provided with at least an outlet for condensate and an outlet for discharging the remaining gas.
The cooling of said oxygen-containing gas with the fluid may be carried out directly or indirectly, during and/or after at least one compressor stage. For indirect cooling the fluid may be any conventional gaseous or liquid coolant, such as freon, water and air. For direct cooling the fluid may be water, methanol, ethanol and the like.
Advantageously, according to the invention the condensate in the condensate outlet has a temperature of ambient or above ambient or a temperature below ambient, e.g. 1-15° C.
In another advantageous embodiment of the present invention the fluid is supplied directly to the oxygen-containing gas during and/or after compression wherein the cooling is essentially obtained by evaporation of the fluid.
In still another advantageous embodiment of the invention the condensate is injected into the oxygen-containing gas during and/or after compression. This is particularly important in locations in which water required for that operation will constitute a supply problem. Preferably, therefor recuperator means are further connected with the fuel inlet of said combustion means for heat exchange, resulting in a further increase of the efficiency with 0.5.
More advantageously, the exhaust gases from the gas turbine means are expanded in at least one condensing turbine.
In another advantageous embodiment of the invention at least part of the exhaust gases from the condensing means are recycled to the inlet of the oxygen-containing gas of the compressor means.
Still more advantageously, at least part of the exhaust gases from the condensing means are recycled to a heat exchange means for heat exchange with the oxygen-containing gas supplied to the inlet for oxygen-containing gas of the compressor means.
In another advantageous embodiment of the present invention part of the exhaust gases from the condensing means are directly recycled to the inlet of the oxygen-containing gas of the compressor means and another part is recycled to a heat exchange means for heat exchange with the oxygen-containing gas supplied to the inlet for oxygen-containing gas of the compressor means.
Further, advantageously, the exhaust gas from a first condensing turbine is further expanded in at least a second condensing turbine. At least part of the exhaust gases from the turbine system are advantageously expanded to a pressure of 0.2-0.8 bara.
Advantageously, according to the invention the relatively cold condensate or gas is applied for cooling purposes and heat developed in the process is applied for heating purposes.
Preferably fluid to be supplied to the compressor is atomized in the oxygen-containing gas to be fed to the compressor means.


REFERENCES:
patent: 3369361 (1968-02-01), Craig
patent: 3657879 (1972-04-01), Ewbank et al.
patent: 3978661 (1976-09-01), Cheng
patent: 4498289 (1985-02-01), Osgerby
patent: 5775091 (1998-07-01), Bannister et al.
patent: 5953900 (1999-09-01), Bannister et al.
patent: 0444913 (1991-09-01), None
patent: 0505263 (1992-09-01), None
patent: 1007140 (1952-05-01), None
patent: 1467142 (1966-12-01), None
patent: 1284335 (1972-08-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System for power generation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System for power generation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for power generation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2567264

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.