System for physically mounting a multifunction user...

Data processing: generic control systems or specific application – Generic control system – apparatus or process – Sequential or selective

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S009000, C700S026000

Reexamination Certificate

active

06285912

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to a multifunction user interface and network sensor system which provides a low profile streamlined combination keypad and sensor. The multifunction user interface is provided as an add-on option to a more basic and lower cost sensor module which provides a plurality of parameter sensors in one sensor module, but does not provide a display or keypad to enable a person at the sensor module to access and control parameters of the system.
More particularly, the subject invention pertains to a multifunction user interface and network sensor system as might be utilized in an occupied space networked environment such as an automated commercial or industrial building in which sensors are installed to sense and control various parameters therein. The sensors can include an occupancy sensor, such as a passive infrared (PIR) sensor or an active infrared sensor or an ultrasonic sensor, a temperature sensor, an ambient light sensor, a relative humidity sensor, a CO
2
sensor, and other parameter sensors.
It would be desirable to provide a plurality of such parameter sensors in one sensor module which can interface with one or more distributed common bus processor control systems to control operation of security systems, energy management systems, etc. in the occupied space networked environment. Such processor control systems are available commercially which incorporate networking such as an Echelon LONWORKS system, CEBus, BacNet, etc.
2. Discussion of the Prior Art
Traditionally, separate sensors have been used for occupancy sensing, ambient light sensing, temperature sensing, etc. in separate lighting control systems, Heating, Ventilation and Air Conditioning (HVAC) control systems, Demand Side Management (DSM) electrical load control systems, and security systems, although modules combining occupancy sensing and ambient light sensing have been used previously.
SUMMARY OF THE INVENTION
Accordingly, it is a primary object of the present invention to provide a multifunction user interface which provides a low profile streamlined combination keypad and sensor as an add-on option to a more basic and lower cost sensor.
A further object of the subject invention is the provision of a multifunction user interface which provides major cost benefits in building and installing automatic control systems in automated commercial or industrial buildings, with additional major cost savings in installation and binding (software connectivity allowing interoperability) of a node to other control nodes in a control system network. The cost of one multifunction sensor module, as compared with separate sensor modules for occupancy, ambient light, and temperature, should greatly reduce the equipment and installation costs. The cost savings result from shared usage of common hardware, software and enclosures, such as a common network control and communications processor and a common communication transceiver between multiple sensors, and the elimination of multiple sensor housings, as well as from the more simplified installation procedures for a single multifunction sensor.
In accordance with the teachings herein, the present invention provides a multifunction user interface provided as an add-on option to a more basic multifunction sensor which does not provide a display or keypad, to provide a local user interface to access and control parameters of a control network. The basic multifunction sensor provides a plurality of parameter sensors in one sensor housing, and can interface with and control operation of one or more processor control systems connected by a network bus in an occupied space networked environment. The basic sensor comprises an occupancy sensor and a temperature sensor, and a common network communications and control processor coupled to a common communication transceiver. The basic multifunction sensor can interface with and control operation of one or more distributed processor control systems for control of the occupied space networked environment. The multifunction user interface comprises a display and a keypad input, controlled by a keypad/display controller, which are electrically coupled to the communications and control processor, to provide a local user interface to access and control parameters of the control network.
In greater detail, the multifunction user interface is provided on a plug-in printed circuit board which plugs into and interfaces with a main printed circuit board of the basic multifunction sensor. The plug-in printed circuit board comprises a keypad/controller printed circuit board, on which is mounted a display/controller printed circuit board. The plug-in printed circuit board is mounted by supports and an electrical header connector to the main printed circuit.
The basic multifunction sensor and the multifunction user interface allow a range of products to be built, from a lower end product to minimize cost and provide basic functionality, to a high end product with a rich feature set including user interfaces for local control and additional parameter sensor inputs.
The keypad includes generic keys to allow the display to allocate different functional assignments, in a menu driven mode, to the generic keys which in turn select and control an appropriate function. Scheduler/real time clock data is imported from other nodes on the network bus to select time of day or seven day timing functions. Additional parameter sensors are connectable to the multifunction user interface unit.
In some embodiments the display can comprise a graphical touch panel which utilizes and displays a graphical icon based touch and enter input. A control function is selected by touching the display, and then controlled by sliding a graphical icon thereon. The multifunction user interface enclosure housing includes a window placed in front of a passive infrared occupancy sensor which provides an aesthetically smooth continuation of the enclosure housing. The keypad is located behind a door to permit access to individual controls of the keypad, and the digital display is centrally located above the door.
A tamper switch is mounted to the back of the main printed circuit board, to contact a mounting surface, such that if the multifunction user interface unit is removed from its mounted position, the tamper switch signals an input to the control processor. In alternative embodiments, the tamper switch can comprise a spring-loaded push button switch or a remote actuator hinged leaf spring, to ensure that a contact point is available by placing the hinged leaf spring at a mounting boss of an electrical outlet box. The main printed circuit board is mounted in a front housing cover, such that the tamper switch reports an alarm signal if the entire unit is removed from its mounting or if the sensor front housing cover is removed.
The main printed circuit board includes the network communications and control processor, an ac/dc power supply, a memory containing programs for the control processor, a clock, inputs from parameter sensors, and the control processor connected by the transceiver to interface with other nodes of the control network. The transceiver interfaces through a plug-in terminal block with other nodes of the control network, and the transceiver is interchangeable to allow the utilization of different transceiver types, depending upon the particular type of network. The keypad microcontroller converts a serial input/output from the common network control processor to a parallel input/output for the display. The common network control processor is connected to a service switch, and a circuit allows the service switch to be shared by an application input/output port and also for service operations.
The basic multifunction sensor module includes a smart power supply circuit which provides auto compensation for an internal heating error due to a range of power supply operating voltages. This allows the sensor circuit to be connected to an input range of 12-24Vac or dc without the need for

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System for physically mounting a multifunction user... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System for physically mounting a multifunction user..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for physically mounting a multifunction user... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2438613

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.