System for monitoring airport equipments utilizing...

Communications: electrical – Systems – Selsyn type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S315000, C340S315000, C340S315000, C340S315000, C340S315000

Reexamination Certificate

active

06437686

ABSTRACT:

BACKGROUND OF THE INVENTION
This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2000-18892, filed Jan. 27, 2000 and No. 2000-174059, filed Jun. 9, 2000, the entire contents of which are incorporated herein by reference.
The present invention relates to an airport facilities monitor system for monitoring airport facilities such as a number of lamps, sensor or the like to be installed on runways, taxiways or the like in the airport, the airport facilities monitor system using the power-line carrier technology.
In the prior art, the airport facilities monitor system for monitoring airport facilities constituted of a number of lamps, sensor or the like to be installed in the airport using the power-line carrier technology have a host station and, respectively through a rubber transformer, terminals (slave stations) connected in series to a power line derived from a fixed current generator CCR/CCT (called fixed current generator, hereinafter) for creating and generating a fixed current from a commercial alternative current source, lamps and sensors being connected respectively to these respective terminals.
There, both the host station and respective terminal perform the host-terminal communication, by transmitting in combination 1-bit information synchronized with the cycle of the power source waveform output from the fixed current generator. In short, the host station transfers the control signal sent from a central monitoring room side which is a higher order system to respective terminal through a power line by the combination of 1-bit information, and upon reception of this information, the respective terminal control the turning ON/OFF of the lamp based on the information contents. On the other hand, the respective terminal monitors the lamp and sensor status, transfers its monitoring information to the host station through the power line by the combination of 1-bit information, while the host station is constituted to transfer the monitoring information received from respective terminals to a monitoring control panel, which is a higher order system, through LAN, to display the status of lamps and the like of respective terminals on an operator console.
By the way, in such power-line carrier monitoring control system as mentioned above, in addition to a dedicated monitoring of burnt-out lamp, nothing but a predetermined number of lamps can be monitored and controlled, because little data amount can be treated by the power-line carrier and, besides, the transfer rate is low.
On the other hand, the fixed current generator in the aforementioned monitoring and control system, is the one designed to supply the power line with power of fixed current and, more concretely, as shown in
FIG. 1
, adopts a method to select a current waveform S
2
of high amplitude between a low amplitude current waveform S
1
and the high amplitude waveform S
2
through the phase control at a convenient phase angle (60 degrees for example) from the zero cross point of the low amplitude current waveform S
1
, using a thyristor, output a predetermined fixed current (6.6 A for example) defined beforehand to be used for lamps or other airport equipment, and supply to the power line.
Therefore, the current immediately after the phase control varies generally in a rapid rise state, presents a high frequency equal or superior to 50 Hz/60 Hz in respect of frequency, transits to a standard waveform (sinusoidal wave) of 50 Hz/60 Hz when in attains the high amplitude current waveform, but happens to be unstable immediately after this transition.
There, conventionally, in the case of transfer of a required signal using a power-line carrier, control, monitoring or other signals are transferred using the power-line carrier, by modulating them with a predetermined frequency from a power line mode which is a part of signal processing system, for the high amplitude waveform S
2
at such a timing to avoid the low amplitude current waveform on the power line and rapid rise portions immediately after the phase control, and further, unstable portions during the transition to the high amplitude current waveform, namely noise producing portions.
However, the aforementioned monitoring and control system aims only to transfer the signal at an appropriate timing, noise still generates from the fixed current generator by the phase control, and under the influence of this noise, the reception sensibility of host station and respective terminal deteriorates considerably. In addition, this noise is a spike noise generated like as impulse, and moreover, it is extremely difficult to eliminate, as the noise generation point varies according to the tap position (phase control angle) adjusting the lamp brightness.
Also, in the host station and respective terminal, the control signal and monitoring signal are carried by the power line, using a power line circuit including power line, rubber transformer or the like; however impedance due to LC exists in the power line circuit, and this impedance absorbs signal carried by the power line. This is caused mainly by resonance phenomenon between the rubber transformer reactance L component and the power line and ground capacitance, and there exist abnormal attenuation points of signal carried by the power line. As the result, terminals at the position corresponding to the abnormal attenuation point drop remarkably in their reception sensibility due to the attenuation of carried signal.
Especially, in the case of power-line carrier, abnormal attenuation point is an inevitable problem, because rubber transformers constituting a number of reactance components are installed in the power line circuit. And further, the installation of rubber transformer being dependent on the lamp location in the airport, and can not be decided arbitrarily, the abnormal attenuation amount increases inconveniently according to the installation mode.
BRIEF SUMMARY OF THE INVENTION
It is an object of the present invention to provide a power-line carrier airport facilities monitor system for allowing to transfer stably host station control signal and status signal of lamp, sensor and the like of a number of terminals, and allowing to transfer effectively a quantity of data.
Another object of the present invention is to provide a monitoring control system using the power-line carrier for reducing the effect of noise produced by the fixed current generator, and also to ensure a high quality transfer, without being influenced by the power line circuit construction conditions.
To solve the aforementioned problems, the present invention relates to a power-line carrier airport facilities monitor system, wherein a host station and respective terminals for monitoring and controlling individually the object facilities such as lamp, sensor and the like respectively via a rubber transformer are connected in series to a power line derived from a fixed current generator, the host station transmitting to the respective terminal using power-line carrier based on a control signal from a higher order system, while the respective terminals transmitting the monitoring signal from the object facilities to the host station using power-line carrier, wherein the host station and terminal comprise:
zero cross detection means for detecting the zero cross of power source waveform of the power line, a data processing calculation control section for creating a control command for respective terminal/monitoring signal of the object facilities as text data, and signal insert means for inserting the text data to the power line by FSK modulation based on the zero cross detected by the zero cross detection means.
According to the invention, adopting the aforementioned configuration, it is possible to avoid the prevention magnetic saturation, the text data to be inserted into the power line is transmitted by frequency modification, and as this frequency modulation, it is transmitted by FSK modulation using two frequency modulation, allowing to transmit avoiding stationary noise generated by the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System for monitoring airport equipments utilizing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System for monitoring airport equipments utilizing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for monitoring airport equipments utilizing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2926829

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.