System for modeling a wavefront using sheared phase shifts

Optics: eye examining – vision testing and correcting – Eye examining or testing instrument – Objective type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06276800

ABSTRACT:

FIELD OF THE INVENTION
The present invention pertains generally to optical diagnostic equipment. More particularly, the present invention pertains to devices and methods that create wavefront images based on phase shifts between discrete rays of light in a light beam. The present invention is particularly, but not exclusively, useful for devices and methods that use wavefront analyses to detect optical aberrations of the eye.
BACKGROUND OF THE INVENTION
By definition, light is electromagnetic radiation that is capable of inducing a visual sensation in the eye. Under this definition, it is common to describe light as being sinusoidal in nature, and as having wavelengths in a range between about four hundred and eight hundred nanometers (400 -800 nm). When light travels as a sinusoidal wave, it will travel through a distance of one wavelength during each of its cycles. Mathematically, these cycles can be expressed as angles where one complete cycle for the sinusoidal wave corresponds to 2&pgr; radians or 360°.
In order to compare different beams of radiation to each other, when both beams have the same wavelength, it is sometimes helpful to identify the phase difference or phase shift between the beams. For this purpose, phase can be defined as the fraction of a periodic waveform that has been completed at a specific reference time. Thus, if a first ray of light and a second ray of light have the same wavelength, &lgr;, and they travel from the same start point through the same medium, but they start at different times, the difference in their respective start times can be expressed as a phase shift. The same argument, of course, applies for their arrival at a common distance from the start point. Thus, for example, if the second ray of light starts one half of a wavelength behind the first ray of light, the phase shift between the first ray of light and the second ray of light will be &pgr; radians, or 180°. Due to this phase shift, the first ray of light will arrive at a common destination one half of a wavelength ahead of the second ray of light.
With the above in mind, it is to be appreciated that a beam of light can be considered as being composed of many individual rays of light. Further, though these rays of light may have the same wavelength, at a particular point in space each light ray will have its own characteristic phase that may, or may not, be the same as the phases of the other light rays. Building on this notion, it is to be appreciated that as a beam of light passes at angles through different media, individual rays in the beam will be refracted through different distances. The consequence then is that the different rays of light in the beam will be affected differently. Stated differently, as individual rays of light in the beam travel along paths of different lengths, there will be a phase shift between the rays. This happens, for example, as a beam of light passes through the optical components of an eye (e.g. lens, cornea). One technique for determining the extent of these differences, and their consequences for diagnostic purposes, is known as wavefront analysis.
In one aspect of a wavefront analysis, the individual rays in a light beam are evaluated for their respective phase. Specifically, this is be done as they pass through a common plane. In this case, if all rays in the beam that have the same wavelength, also have exactly the same phase as they pass through this common plane, a plane wavefront results. On the other hand, if the rays in the beam have different phases, the wavefront will be distorted. Depending on the extent, position and nature of the distortions in the wavefront, the optical characteristics of the path traveled by individual light rays in the beam can be analyzed.
With the above in mind, consider an eye. If light can be radiated from a point source on the retina of the eye, this light will initially radiate as a light beam having a plane wavefront. As the beam travels outwardly through the eye, however, it will pass through optical components of the eye which may, or may not, introduce aberrations into the light beam. In turn, these aberrations will manifest themselves as distortions of the wavefront.
Consequently, by determining the wavefront of a light beam, after it has passed through an eye, it is possible to evaluate the wavefront and to determine therefrom whether the aberrations that have been introduced are normal or require corrective action.
In light of the above, it is an object of the present invention to provide a device for imaging a wavefront for evaluating the optical properties of an eye. Another object of the present invention is to provide a device which generates wavefront data based on the phase shifts in a light beam that are caused when light passes through an eye. It is another object of the present invention to provide a device for imaging a wavefront which effectively establishes a point source of light on the retina of the eye. Still another object of the present invention is to provide a device for imaging a wavefront to evaluate the optical properties of an eye that is easy to use, relatively simple to manufacture, and comparatively cost effective.
SUMMARY OF THE PREFERRED EMBODIMENTS
A device for imaging a wavefront to determine the optical properties of an eye includes a light source that is used for directing an input light beam into the eye. More specifically, the input light beam is focused onto a substantially circular area on the retina. This effectively establishes a point source of light on the retina. Light from this point source is then reflected as scattered light back through the eye along a return light beam path. For purposes of the present invention, the input beam is preferably oriented at an angle to the return beam so that the two beams are not coincident. Also, the angle between the input beam and the return beam is preferably in a range from approximately five tenths of a degree to approximately twenty degrees (0.5°-20°).
An optical means, such as focusing lenses and mirrors that are well known in the art, is used to direct the return light beam along a beam path toward a shearing plate. As intended for the present invention, this shearing plate will preferably have one of two different configurations. One of these configurations is useful for effecting a lateral shear of the return light beam while the other is useful for effecting a radial shear of the return light beam.
In the configuration for the shearing plate that is effective for introducing a lateral shearing of the return light beam, the shearing plate includes two substantially coplanar patterns that are superposed and oriented so that phase shifts are taken in a plane substantially perpendicular to the return beam path. For reference purposes, consider that the return beam path is oriented in a z-direction and that the patterns lie in an x-y plane perpendicular to the z-direction. Within this reference system, the superposed patterns are positioned so that one pattern introduces a phase disturbance into the return light beam in one predetermined direction (e.g. the x-direction), while the other pattern introduces a phase disturbance into the return light beam in a substantially perpendicular direction (e.g. the y-direction). From these phase disturbances, phase shifts in the return light beam can be measured in both the x and y directions. In an alternate configuration for the shearing plate (radial shear), a single pattern can be used which will introduce a phase disturbance into the return light beam in the z-direction, i.e. along the beam path of the return light beam. Phase shifts in the return light beam can then be measured from the phase disturbance in the z-direction.
Although the input beam for the device of the present invention may be white light (i.e. includes all visible wavelengths for light), the input beam preferably includes wavelengths that are in a range from approximately seven hundred and twenty microns to approximately nine hundred microns. On the other hand, the patterns that are to be used to dete

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System for modeling a wavefront using sheared phase shifts does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System for modeling a wavefront using sheared phase shifts, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for modeling a wavefront using sheared phase shifts will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2446078

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.