Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation
Reexamination Certificate
2001-03-09
2004-06-01
Shaw, Shawna J. (Department: 3737)
Surgery
Diagnostic testing
Detecting nuclear, electromagnetic, or ultrasonic radiation
C600S476000
Reexamination Certificate
active
06745067
ABSTRACT:
DESCRIPTION
FIELD OF THE INVENTION
The present invention relates to a system for marking on a recording medium, such as a label, the locations of imaged tissue with respect to the surface of the tissue, and relates particularly to, a system for marking on a recording medium the locations of tissue sections imaged by a microscope, such as a confocal microscope, which is of pathological interest. Such marks are useful for directing treatment of the tissue.
BACKGROUND OF THE INVENTION
Confocal microscopy involves scanning tissue to produce microscopic sectional images of surface or subsurface tissue. Such microscopic imaged sections may be made in-vivo and can image tissue at cellular resolutions. Examples of confocal scanning microscopes are found in U.S. Pat. Nos. 5,788,639 and 5,880,880, and in articles by Milind Rajadhyaksha et al., “In vivo Confocal Scanning Laser Microscopy of Human Skin: Melanin provides strong contrast,” The Journal of Investigative Dermatology, Volume 104, No.
6
. June 1995, pages 1-7, and by Milind Rajadhyaksha et al., “Confocal laser microscope images tissue in vivo,” Laser Focus World, February 1997, pages 119-127. These systems have confocal optics which direct light to the patient's tissue and image tissue sections from the returned reflected light. These confocal systems, although useful for microscopic examination of a tissue lesion or other abnormal tissue, have no capability for identifying locations on the surface of the tissue where the imaged lesion is within the tissue. Without such identification, the physician does not know after imaging the particular locations in the imaged tissue to carry out treatment of the lesion viewed in the images. Such treatment may include excising the tissue from the patient, radiation therapy, or ablation. Since treatment can harm healthy tissue which may lie near a lesion, precise location of the lesion is of importance. Also, without the capability to identify on the tissue surface the locations of an imaged lesion, it may be difficult for a physician to locate the lesion in future examinations for observing possible changes in the condition of the tissue when treatment of the lesion is deferred or is non-invasive.
SUMMARY OF THE INVENTION
Accordingly, the principal feature of the present invention is to provide an improved system for marking on a recording medium, such as the label, the locations of imaged tissue sections with respect to the surface of the tissue, in which such tissue section may present a lesion or other abnormal parts of the tissue.
Another feature of the present invention is to provide an improved system for providing macroscopic markings of the location of one or more selected microscopic sectional images of tissue with respect to the surface of such tissue.
A further feature of the present invention is to provide an improved system for automatically or manually marking the location of one or more microscopic sectional images of tissue with respect to the surface of such tissue.
Briefly described, the present invention embodies a system including a microscope having optics through which the microscope can image tissue sections below the surface of the tissue. A tissue stabilization mechanism is provided by a ring applied to the surface to the tissue for stabilizing the tissue and localizing a portion of the surface of the tissue through an aperture in the ring. Connected to both the ring and the microscope is an actuator which moves the ring to adjust the position of the tissue with respect to the optics. This actuator allows an operator of the system to survey different images of tissue sections with the microscope. A programmed controller is provided to enable the operator to select one or more imaged tissue sections to be marked, and for obtaining location information representing the location in the tissue of each selected tissue section with respect to the surface of the tissue. After imaging, the microscope is detached from the actuator and marks are produced on the recording medium in accordance with the location information either automatically by a print head located in the ring and operated by the controller, or manually by an operator applying such marks with a pen. Marks manually made on the recording medium may be based on the location information provided to the operator by the controller, such as via a display coupled to the controller. A single mark may reference one or more selected tissue sections. These marks indicate the location on the tissue surface of the sub-surface tissue presented in each of the selected tissue sections.
In a first embodiment of the system, the recording medium is located between the surface of the tissue and the aperture of the ring, and the controller determines the location information for each selected image with respect to indicia on the recording medium representing an origin for the location information.
In a second embodiment of the system, the recording medium is also located between the surface of the tissue and the aperture of the ring, and the controller determines the location information with respect to indicia on the recording medium corresponding to different locations on the surface of the tissue. Such indicia may have lines of symbols encoding different locations of the tissue surface, which may be read and decoded by the controller to determine the location information of each selected tissue section.
In a third embodiment of the system, the ring has a template with holes for placing reference marks on the surface of the tissue around the tissue in the aperture of the ring. The controller determines the location information of selected tissue sections in reference to the location of the holes in the template. The recording medium in this embodiment is the surface of the tissue, such that after imaging either the template holes are used by a printer head placed in the ring to produce marks on the tissue in accordance with the location information, or the ring is removed and the reference marks are used by an operator to apply marks on the surface of the tissue in accordance with the location information.
In a fourth embodiment of the system, the recording medium is located on a platen that is coupled to the ring to be movable therewith, and the system includes a pen coupled to the microscope which is positioned over the recording medium. When each tissue section is selected by the operator, the pen applies a mark on the recording medium. This both determines the location information and produces marks on the recording medium indicating the location on the surface of the tissue of each selected tissue section. After imaging and detachment of the microscope from the actuator, the recording medium may be placed on the surface of the tissue in the aperture of the ring.
Marks on the recording medium identify the location of the tissue in selected tissue sections below the tissue surface for subsequent viewing or treatment. The microscope in the above embodiments is preferably a confocal microscope which provides images of tissue sections below the tissue surface. However, other microscopes may be used to provide images of the tissue, such as microscopes employing optical coherence tomography, or two-photon microscopy.
Further, the term tissue as used herein generically refers to any natural or surgically exposed surface of the body of the patent, such as skin, teeth, oral mucosa, cervix, or internal body-tissue during surgery. Tissue may also represent a tissue specimen removed from a patient.
REFERENCES:
patent: 5020088 (1991-05-01), Tobin
patent: 5034613 (1991-07-01), Denk et al.
patent: 5108926 (1992-04-01), Klebe
patent: 5146923 (1992-09-01), Dhawan
patent: 5428690 (1995-06-01), Bacus et al.
patent: 5532874 (1996-07-01), Stein
patent: 5719700 (1998-02-01), Corcuff et al.
patent: 5740270 (1998-04-01), Rutenberg et al.
patent: 5788639 (1998-08-01), Zavislan et al.
patent: 5791346 (1998-08-01), Craine et al.
patent: 5836877 (1998-11-01), Zavislan
patent: 5880880 (1999-03-01), Anderson et al.
patent: 5978695 (1999-11-01),
Greenwald Roger J.
Zavislan James M.
Lucid Inc.
Lukacher Kenneth J.
Shaw Shawna J.
LandOfFree
System for marking the locations of imaged tissue with... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System for marking the locations of imaged tissue with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for marking the locations of imaged tissue with... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3364119