Optics: eye examining – vision testing and correcting – Eye examining or testing instrument – For interpupillary distance measuring or lens positioning
Reexamination Certificate
1999-11-12
2003-03-18
Manuel, George (Department: 3737)
Optics: eye examining, vision testing and correcting
Eye examining or testing instrument
For interpupillary distance measuring or lens positioning
Reexamination Certificate
active
06533418
ABSTRACT:
TECHNICAL FIELD
The present invention relates to an eyeglasses made-to-order system for determining an eyeglass design to reflect the preferences of the eyeglasses consumer using a computer-controlled display screen; and the present invention also relates to methods applied to this system: a method for generating synthetic images to overlay portraits and eyeglass frames, a method for determining the positions of the endpieces and bridge of the eyeglasses, and a method for changing the eyeglass frame type.
BACKGROUND ART
Before now, a method was proposed wherein the portrait (facial image) of an eyeglass wearer (eyeglass consumer) is captured with a computer using computer graphics methods; the characteristics of the facial features are analyzed using predetermined procedures; and the form of the eyeglasses is designed by applying predetermined design rules to the results of the analysis (See Japanese Patent Laid-open No. H5-35827 and Japanese Patent Laid-open No. H7-168875, for example).
Compared to prior general methods wherein the eyeglass designs are determined without consideration of the differences in eyeglass wearers' facial features, the abovementioned conventional method has a greater possibility of attaining an eyeglass design which better suits the facial features of the eyeglass wearer because the characteristics of the facial features are analyzed by computer and a design is generated to fit the facial features.
However, in the abovementioned conventional method, a computer mainly performs the procedures for analyzing the characteristics of the facial features and selecting the design to suit the characteristics thereof. In other words, the analysis of the characteristics of the facial features and the determination of the design to fit those analyzed characteristics is in this method essentially made by the people who created the system software, such as the designers and programmers. Consequently, the designs attained inevitably depend greatly on the sensibility and thinking of the people who created the system software.
However, design preferences differ greatly from person to person; it is hard to imagine that the sensibility of a specific designer would be accepted by all people. Accordingly, the abovementioned conventional method attains results which are satisfactory in the case where the sensibility and so forth of the designer act in a positive direction, but at the same time, there is a considerable possibility that the reverse case will occur. Moreover, the essential processes in the abovementioned method are determined in advance by the computer software, starting with a process to capture the facial image, and there is little room for operator choice. In determining the design, all of the predetermined processes are carried out automatically. As a result, there is a possibility that time will be used unnecessarily in determining the design in some cases.
In view of the foregoing situation, it is an object of the present invention to provide an eyeglasses made-to-order system, wherein an eyeglass design that better reflects the eyeglass wearer's preferences can be determined and ordered quickly with the operator performing only those procedures thought necessary.
Also, apparatuses to simulate the wearing of eyeglasses, using an imaging function to capture the frontal portrait of a person's head on a computer-controlled display screen and displaying the portrait wearing the eyeglasses by laying the image of the eyeglass frames over the portrait on screen, were known to be used in determining eyeglass designs and so forth before now (Japanese Patent Laid-open No. S63-76581).
In this type of conventional simulation apparatus, different methods for overlaying the frame image on the portrait were tried. These methods include the method for finding the optimal position while moving the frame image and the method, wherein (a) the coordinates of both corneal vertexes
202
L and
202
R are found on the portrait
201
and a line
203
connecting the corneal vertexes
202
L,
202
R is found; and (b) the bisection point of that line
203
is determined to be a reference point
205
and the frame image is laid over on the portrait with the reference point of the frame image matched to that reference point
205
, as shown in FIG.
17
.
However, even if the optimal position is determined visually on screen and the frame image is laid over the portrait, this is not a natural simulation because it may vary from the actual wearing state in the case where a precise frontal image was not attained. Also, because portraits are not bilaterally symmetric, it is not possible to simulate a natural state of wearing eyeglasses if the frame image is overlaid with the center point of the line between corneal vertexes on the portrait as the reference point for the portrait. Furthermore, the information provided with a simulation using only a frontal image is not sufficient for selecting eyeglasses.
In view of the foregoing situations, it is an object of the present invention to make possible a natural simulation of wearing eyeglasses with consideration of the asymmetry of facial features, and to make possible the simulation of wearing eyeglasses as seen from a profile view of the face and to provide sufficient and precise information for selecting eyeglasses.
Also, before now, the design of the individual parts and their positions, as well as the lens shape, were thought to be important as principal elements for determining the design of the eyeglasses. Attempts are made to apply a variety of ornamentation to the parts and to make the parts in unique shapes. Consequently, various designs were naturally considered for the endpieces and bridge and operations to apply the ornamentation and so forth were also performed.
However, although the positions of the endpieces and bridge are a regular design consideration, the designer usually determines these from a functional profile, based mainly on an average model that considers the mean facial width and mean distance between pupils, that the bridge does not strike the nose, and whether there is an optimal position for mounting the temples.
However, when the eyeglass wearer actually wears these eyeglass frames, it is often thought that different positions for the endpieces and bridge would better match the face shape of the eyeglass wearer. Depending on the eyeglass wearer, it may be desirable to make the nose appear taller by establishing the bridge at a higher position than usual, for example. Before now, changing the positions of the endpieces and bridge according to customer preferences was not a consideration and it was not possible to respond to such preferences.
In view of the foregoing situation, it is an object of the present invention to provide a method for determining the positions of the endpieces and bridge of the eyeglasses, so that the positions of the endpieces and bridge of the eyeglasses can be determined according to the eyeglass wearer's preferences, and so that the design of the eyeglasses can better reflect the eyeglass wearer's preferences.
Eyeglass frames can be generally classified into three categories, based mainly on differences in the structures which hold the lenses: the full-rimmed type, the semi-rimless type, and the three-piece type (also known as the Arimless type).
The full-rimmed type has the entire perimeter of the lenses enclosed by the rims. The semi-rimless type has, as the basic structure, all or part of the upper portion of the lens perimeters enclosed with rim and the lower portion supported with nylon thread. The three-piece type does not use rim and has the bridge and temples mounted directly on the lenses.
However, it is not realistic to prepare and stock or carry all of the abovementioned three types of frames for each of the various design images. Generally one type of frame is prepared for one design image.
However, it may be that while the design images of frames stocked by the store match the customer's desire, the frame types thereof do not match the custome
Akaba Toshihisa
Iizuka Isao
Izumitani Yukihiro
Sakai Yasushi
Watanabe Shigeru
Hoya Corporation
Manuel George
LandOfFree
System for making spectacles to order does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System for making spectacles to order, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for making spectacles to order will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3022378