System for long-term remote medical monitoring

Surgery – Diagnostic testing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C128S903000, C600S300000, C600S301000, C600S368000, C600S382000, C600S390000, C600S391000, C600S393000, C600S483000, C600S484000, C600S485000, C600S509000, C600S532000, C600S544000, C607S060000

Reexamination Certificate

active

06315719

ABSTRACT:

PRIORITY CLAIM
This application is based on and claims the priority under 35 U.S.C. §119 of German Patent Application 199 29 328.7, filed on Jun. 26, 1999, the entire disclosure of which is incorporated herein by reference.
FIELD OF THE INVENTION
The invention relates to a method and an apparatus for remotely carrying out a long-term medical monitoring, especially for carrying out the medical monitoring and supervision of astronauts onboard a space station, which uses sensors arranged directly on the skin surface of the subject to be monitored, as well as a data recording unit associated with the sensors.
BACKGROUND INFORMATION
Astronauts onboard space stations, and particularly the International Space Station (ISS), must live and work under extreme external conditions for rather long time periods, of several weeks, months, or even years. For the personal protection of these astronauts, as well as the supervision and assurance of the success of the overall mission, it is therefore necessary to carry out a continuous monitoring of the medical or physical conditions of these astronauts.
The medical monitoring system to be used in the above-mentioned context must be small, portable, and operable by a single astronaut to which the system is connected. The monitoring of the physical or medical data provided by the respective sensors must be possible continuously while the astronaut is at any location within the space station, and also while the astronaut is carrying out extra vehicular activities (EVAs) outside of the space station. Thus, the system requires a remote monitoring capability. Moreover, such a system must be easily integratable into the already existing telecommunication infrastructure of the space station.
Such a remote medical monitoring system is also becoming the subject of increased interest in fields other than space medicine, such as in the fields of emergency medicine, sports medicine and leisure activity medicine, as well as for the real-time physical monitoring of persons engaging in sports and leisure time activities, for monitoring the overall fitness or the actual existing physical load being applied to or exerted by a person. In such fields, there is an ever increasing demand for the miniaturization of medical devices such as electrocardiographs (EKG) or pulse oximeters, for carrying out the medical monitoring functions, in order to achieve the greatest possible portability of such devices, and to make the use of such devices suitable in the greatest range of applications.
A range of devices already exists for carrying out such purposes, for example in the form of portable transient recorders. However, any such known devices or systems are essentially limited to the detection and monitoring of relatively few biomedical signals. The number of the sensors utilized in such systems is thus also comparatively limited, and the signal transmission of the biomedical signals from the sensor to a connected data logger as well as to a possibly provided process computer, is typically hard-wired, i.e. carried out by wire-based connections. In other words, the respective sensors are connected to the other evaluating, processing and recording devices by means of hard wired connections. If additional signals are to be measured, then the devices correspondingly become larger, or an additional data recorder must be used. For these reasons, the known devices and systems are not suitable, or can only be used with serious limitations, for an encompassing, location-independent, user-friendly, remote telemonitoring of a broad range of physical and/or medical parameters. Furthermore, such known systems are not well suited to be being reactively adapted to flexible and varied demands of the system.
SUMMARY OF THE INVENTION
In view of the above, it is an object of the invention to provide a system, and more particularly a method and an apparatus, for the long-term remote medical monitoring of persons or other living subjects (e.g. zoo animals or animals in the wild), which system makes it possible to use a flexible arrangement of various different autonomous sensors at various different desired locations on the body of the subject, simultaneously, for carrying out an adaptable continuous monitoring of various different physical and/or medical parameters of the subject. It is a further object of the invention to provide such a system that is suitable as a general adaptable and encompassing monitoring system that can readily be integrated into existing electronics and telecommunication infrastructures, and particularly is suitable for remote monitoring of physical and medical data by means of satellite communication. The invention further aims to avoid or overcome the disadvantages of the prior art, and to achieve additional advantages, as are apparent from the present specification.
The above objects have been achieved according to the invention in a system for long-term remote medical monitoring of a person or other subject, such as an astronaut onboard a space station. The system according to the invention comprises at least one autonomous sensor unit including a sensor and a pair of transmit/receive electrodes that are adapted to be arranged on the skin or body surface of the subject, a central transmitting and receiving unit which is adapted to be arranged on the body of the subject, and a portable data recording unit. The autonomous sensor units are adapted to acquire sensor data from the body of the subject, i.e. medical and/or physical data such as pulse rate, blood oxygen content, blood glucose content, other blood composition data, blood pressure data, electrocardiogram data, electroencephalogram data, respiration rate data, perspiration data, body temperature data, and the like. The transmit/receive electrodes of each autonomous sensor unit are adapted to transmit the acquired sensor data into the body of the subject, so that these sensor data are transmitted via the skin and/or other body tissues of the subject to the central transmitting and receiving unit. Other signals, such as monitoring signals and polling signals can be transmitted from the central transmitting and receiving unit through the body tissues of the subject to the sensor unit, where these signals are picked up by the transmit/receive electrodes of the respective sensor unit.
Particularly, the sensor data are transmitted through and received from the skin and other body tissues of the subject body in the form of electrical alternating current (a.c.) voltage signals that are conducted through the body tissues. As a result, the present system does not require any additional cable or hard wire connection, or even a radio link connection for transmitting the sensor data from the autonomous sensor units to the central transmitting and receiving unit and other components of the system, since the sensor data are directly exchanged via the skin and other body tissues of the subject. This has the advantage that the sensors may be adaptably arranged at any desired location on the body of the subject, whereby the sensors are automatically connected to the required electrical conductor for achieving the signal transmission, i.e. the signal transmission is carried out through the electrical conductor provided by the skin and other body tissues of the subject.
Such a body-based data transmission additionally has the advantage that the transmitting power required therefore is extremely small. This avoids the generation of interference in the electrical operation of other devices, and also helps to prevent the unintended interception or tapping and surveillance of the sensitive medical data. The resulting very low power consumption is additionally advantageous for achieving the goal of a long-term monitoring, especially in applications having a limited power supply.
Further preferred features of the invention call for the use of highly miniaturized components in the inventive system, which improves both the wearing comfort and the user-friendly operation of the system components. Furthermore, a rather large plurality o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System for long-term remote medical monitoring does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System for long-term remote medical monitoring, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for long-term remote medical monitoring will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2604442

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.