Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...
Reexamination Certificate
2000-03-31
2001-02-27
Mendez, Manwell (Department: 3763)
Surgery
Means for introducing or removing material from body for...
Treating material introduced into or removed from body...
C604S207000, C604S232000
Reexamination Certificate
active
06193698
ABSTRACT:
The invention relates to a system for locking a dosing button in an apparatus for metered administration of an injectable product as it reads from the preamble of claim
1
.
Apparatuses for metered administration of an injectable product are known, in particular, in insulin treatment, these being, for example, so-called injection pens, with which a diabetic is able to inject himself with the desired dose of insulin. Such injection pens comprise a so-called dosing button protruding like the push-button of a ballpoint pen from an opening in the housing of the injection pen. To prepare the injection, the dose to be injected is selected or set by rotating the dosing button relative to the housing. By rotation of the dosing button, a drive member is preset. To make the injection, the dosing button is then pressed from a first end position a little further in the housing up to a second end position, and thereby actuates the preset drive member. The latter in turn acts in the preset manner on a pumping member, generally a piston, which is shiftably accommodated in an ampoule filled with insulin, and which, due to the effect of the drive member, displaces the preset insulin dose from the ampoule through an injection needle. At the end of injection, the dosing button is latched in its second end position, from which it only moves itself back into its first end position immediately prior to the next injection, in which a renewed dose is again possible. In such an apparatus as known, for example, from EP 0 730 876 A2 and DE 41 12 259 A1, shifting the dosing button from its latched second end position into the first end position is only possible when an indicator member indicates the zero position of the dosing button. The starting position of the dosing button prior to metering the amount of product to be administered by the next injection is defined and coordinated with the indicator. The design for achieving this is, however, highly complicated. It is the object of the invention to assure by as simple means as possible that an indicated rotation position of a dosing button of a device for metered administration of an injectable product coincides with the actual rotation position of the dosing button during metering.
This object is achieved by the subject matter as it reads from claim
1
.
A device for metered administration of an injectable product comprises a housing, including an accommodation for the product. For an injection, a selectable dose of the product held in a container is pumped from the container by means of a pumping member. The container may be formed directly by the housing, i.e., by the accommodation thereof. Preferably serving as the container is an ampoule, accommodated in the accommodation of the housing, the accommodation being configured as an ampoule compartment. The pumping member is preferably formed by a piston, shiftably accommodated in the container. The pumping member may also be formed, however, by a squeezing mechanism with which a pliant tube is squeezed between two squeeze positions, i.e. a peristaltic pump. In principle, metering rotary pumps may also be put to use. The injectable product is primarily a liquid solution of an active substance, for example, insulin or other liquid medicaments.
When use is made of a piston, the drive member for the pumping member is preferably formed by a piston rod which moves against the piston, pressing the piston in the direction of a container outlet port so that the product is displaced from the container.
Coupled to the drive member is a dosing button, shiftably mounted in the housing, which in being shifted from a first shift position into a second shift position actuates the drive member such that the selected dose of the product is pumped by the pumping member. In the first position of the dosing button, the dose is selected on rotation of the dosing button from a first rotation position for zero delivery into a second rotation position assigned to the selected dose. The coupling is preferably mechanical, but, in principle, may be any other type of coupling, for instance an electrical or electromechanical coupling.
For indicating the rotation position of the dosing button and thus the dose of the product selected thereby, a first indicator sleeve, affixed to the housing, and a second indicator sleeve, rotatable with the dosing button, are provided. The indicator sleeves are provided with indicator members, permitting reading of the selected dose based on the rotation position of the indicator sleeves relative to each other. Preferably, one of the indicator sleeves surrounds the other. In this arrangement, dose values or symbols representing dose values are marked on a scale of the inner indicator sleeve which are readable through a window in the outer indicator sleeve. The indicator sleeves could, however, also be arranged in sequence along a common longitudinal axis, the relative rotation position then being indicated, for example, by means of a marking on the shell surface of the one indicator sleeve, opposite a corresponding scale on the other indicator sleeve. Preferably, the inner indicator sleeve is arranged affixed to the housing or is itself formed by part of the housing, and the outer indicator sleeve is rotated by turning the dosing button around the inner indicator sleeve. In principle, it is also possible in this shell-like arrangement of the indicator sleeves that the inner sleeve is rotatable with the dosing button and the outer sleeve is affixed to the housing.
To ensure a defined starting condition of the apparatus prior to an injection, a system for locking the dosing button is provided in the form of an anti-shifting member. This system for locking the dosing button prevents an uncontrolled, i.e. accidental, shifting of the dosing button from the second position back into the first position. The dosing button can only move back into its first position when the indicator sleeves are located in the zero position relative to each other in which the dose “zero” is indicated. In the locked second position, the dosing button is preferably locked not only from shifting out of place, but also from rotating out of place relative to the housing. The system for locking the dosing button may be configured as an anti-shifting member and simultaneously as an anti-rotation lock. An anti-rotation lock may also be provided elsewhere. In principle, it is likewise conceivable, however, that the dosing button rotates idly in its proximal second position by it being uncoupled from this position by the drive member.
In accordance with the invention, the system for locking the dosing button is released by simply pressing a trigger button which, however, for external access, namely finger pressure, is only released from the second indicator sleeve, rotatable with the dosing button, in the zero position of the first and second indicator sleeve.
This arrangement for unlocking the system locking the dosing button in accordance with the invention is easy to build and compact, and is particularly robust and operationally reliable, not least by using a sleeve to shield and release the trigger button. This sleeve can rotate simultaneously with the dosing button in the distal first dosing button position, releasing of the trigger button occurring dependent on the rotation position of this sleeve.
In accordance with the invention, the second indicator sleeve comprises a breakthrough, which, in the zero position of the first and second indicator sleeve, is located above the trigger button so that the trigger button is exposed for being pressed. However, as long as the second indicator sleeve is not positioned in the zero position of the first indicator sleeve, it covers the dosing button to shield it from external access, thereby preventing unlocking of the anti-shifting member. In a first example embodiment, the breakthrough is a simple open breakthrough, sufficiently large so that the user has finger access through it. In a second example embodiment, the breakthrough at the second indicator sleeve creates a pressing aid, pr
Hertig Guido
Kirchhofer Fritz
Disetronic Licensing AG
Dorsey & Whitney LLP
Mendez Manwell
LandOfFree
System for locking a dosing button in a device for the... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System for locking a dosing button in a device for the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for locking a dosing button in a device for the... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2605084