System for expressing complex data relationships using...

Data processing: software development – installation – and managem – Software program development tool – Programming language

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S241000

Reexamination Certificate

active

06510551

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates, in general, to database software and computer program products and, more particularly, to software that relies on complex data relationships to obtain program data and instructions required for desired operation.
2. Relevant Background
Software applications comprise coded instructions that are executable on a computer to process data (i.e., inputs) to generate a desired result (i.e., outputs) Increasingly, portions of the data and portions of the coded instructions (i.e., components) may be stored in a distributed fashion in database structures. These database structures are coupled directly or through networks to the computer on which the application is executing. Application behavior is defined by a data model that describes the data sources and relationships between the data sources. With the trend towards increasingly distributed systems, application and database development increasingly require a means to express the data model that the application relies on. The present invention involves methods, systems, and computer program products used to access and manipulate data within an application that uses complex data sources and data models.
In prior solutions, the application developer must rely heavily on database management systems (DBMS) and a knowledge of database connectivity to implement an application using distributed data and program components. DBMS systems hide the low-level features of the underlying data base and its connectivity to the required target data. Using a DBMS, data can be accessed by higher level database query languages such as structured query language (SQL). While this eases the burden of managing multiple data sources, it has compounded the problem of managing complex data models. Application developers must still express the complex data relationships using a combination of program language constructs and database-specific query language constructs. In practice, the application developer is forced to use either embedded query language (e.g., SQL) constructs or other vendor proprietary DBMS-specific application programming interfaces (APIs). Both of these solutions fail to address the complex data modeling requirements that now exist and require the application developer to have extensive database and query language knowledge.
Another trend in application development is to enable “domain experts” to author domain-specific application software. Domain experts are individuals with specific knowledge and experience in the domain in which the application is to operate. Hence, domain experts have specific knowledge about the desired behavior of applications. Typically, the domain expert is not a programmer, and so describes the desired application behavior to a programmer who has general knowledge of the program constructs, operating systems, and platforms that define the environment in which the application is to operate. Unfortunately, the translation of an application from a specification defined by a domain expert into code authored by a programmer often results in unacceptable program code. Further, the domain expert cannot verify the programmers work and the programmer cannot verify the domain experts work further complicating the development process. Hence, a need exists for methods and computer implemented systems enabling a domain expert to author application software without reliance on a computer programmer.
As an example in the insurance industry, a “rating methodology” is typically developed by actuaries and business analysts who understand the insurance industry and customer needs. Typically the methodology is expressed in domain-specific terms and expressions that can be communicated easily between the analysts and actuaries. However, these domain specific terms and expressions do not readily translate into computer readable program code. Hence, computer programmers translate the rating methodology into a software implementation. This translation process is costly, error prone, and time consuming. Analysts who designed the original methodology cannot independently verify that the software translation is an accurate representation of the methodology. Moreover, the resulting software often contains machine specific program code that is not portable between mainframes, workstations, and personal computers. These factors alone or in combination tend to slow down the development cycle so that new applications as well as updates and modifications of existing applications take unacceptably long to complete. A need exits for a systems and method for application development that provides a more streamlined, shorter development cycle.
COBOL is widely used for common business applications because none of the programming languages that have become popular in the last three decades aid in overcoming the limitations set out above. Most of the advances embodied in popular programming languages since COBOL (e.g., BASIC, FORTRAN, C, C++, and JAVA) offer improvements to COBOL that are simply irrelevant to common business applications such as insurance rating that function essentially to transform database inputs into database outputs. Principle functionality desired in these applications includes:
Simplified database access integrated into the language;
Support for direct manipulation of sets of records without complex loops, arrays, and the like;
Runtime configuration based on business logic and constraints;
Rule-based deduction;
Automatic generation of user interface components; and
Portability across all levels of enterprise computing.
Conceptually, many limitations of the prior art result because the problem to be solved, i.e., implementing a business process, is merged with the programming logic that is used to access data required by the business process. Because of this merger, the application developer must know where the data and/or program components reside and what relationship(s) those data and program components have to the location of other data and program components. Small changes in the business process due to expanded product portfolios, legislative changes or business practices required significant programming effort to implement.
Similarly, porting an existing application to a new computer system required a similar level of programming effort. Such changes alter the data model and force the application developer to make significant changes to the expression of that data model in the application. Hence, it becomes prohibitive to take advantage of new hardware and operating environments. As a result, many existing business systems remain on older mainframe computer systems implemented in COBOL code that is bulky, costly and difficult to maintain. A need exists for expressing the complex data relationships used by a business application using simple language constructs.
Further difficulty arises because the application developer programs in a generic programming environment that fails to provide simple constructs to express common relationships that are inherent in databases. Typical programming environments such as COBOL, C, C++and Java(tm) include a variety of program constructs that ease the expression of procedural processes. However, even modern programming languages such as Java fail to provide programming constructs that directly express classic database relationships such as “many-to-one”, group membership, and “many-to-one” relationships. Because of this, existing programming languages require the application developer to write to the DBMS using the vendor proprietary DBMS-specific API or query language. A need exists for a programming environment that expresses complex data relationships as built-in language constructs.
SUMMARY OF THE INVENTION
Briefly stated, the present invention involves a programming environment including a source code programming language comprising a plurality of programming constructs. A first set of constructs within the programming language are for expressing procedural operations performed on sp

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System for expressing complex data relationships using... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System for expressing complex data relationships using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for expressing complex data relationships using... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3029352

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.