Telecommunications – Radiotelephone system – Zoned or cellular telephone system
Utility Patent
1998-03-09
2001-01-02
Bost, Dwayne D. (Department: 2744)
Telecommunications
Radiotelephone system
Zoned or cellular telephone system
C455S423000, C455S067700, C455S069000, C455S070000, C379S008000, C379S009000
Utility Patent
active
06169896
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention pertains to systems and methods for testing communication networks or systems, and more particularly, it pertains to methods and systems for testing the service quality of various communication networks in a side-by-side comparison fashion.
2. Description of the Prior Art
The world of communication services, and particularly wireless services, is at a strategic point. Heretofore, in addition to the conventional public switched telephone network (PSTN), there have generally been only two “cellular” service providers in any given market. With the arrival of personal communication services (PCS) and enhanced specialized mobile radio (ESMR) networks along with the various digital upgrades undertaken by the cellular incumbents, the choice of wireless network services in almost all markets is rapidly increasing and can be expected to increase by a factor of four or more in the very near future. The addition of low earth orbiting satellite (LEOS) networks and the advent of two-way paging networks (narrowband PCS) further increases the number of wireless alternatives in the marketplace. The network implementation of the technology in a given service area is one of the most important factors in creating a high quality service for the subscriber. The same technology can be implemented in a variety of ways (e.g., number and location of cell sites, frequency plans, handoff and threshold settings, etc.) to offer vastly different experiences to the end user. In most large cities, the existing cellular networks offer decent indoor and outdoor coverage but suffer from capacity (busy signals) and interference (static, co-channel clutter, dropped calls, etc.) effects. The latter shortcomings are accentuated by the segmentation of the cellular spectrum to accommodate digital services. With smaller subscriber bases, the newer PCS services do not generally suffer from traffic related impairments; however, obtaining locations and erecting antennas for cell sites is getting to be increasingly difficult for a variety of reasons which results in potentially poorer coverage for the newer entrants.
An evaluation problem immediately presents itself when considering network quality, which problem is accentuated by the proliferation of different types of communication services as pointed out above. With all of the various factors that affect cellular service and particularly the quality thereof, a problem has arisen in being able to compare the network service attributes in an objective manner in order to properly rate them so that one can make an informed choice of provider and type of service for a particular area of usage. It may also be critical to compare the various wireless services with conventional (landline) communication networks in order to properly evaluate the quality of the service provided.
In the past, various systems and methods have been used for the testing of a specific communication network service, particularly a wireless service, over a varied geographic area. These systems generally were designed to provide data on a number of engineering parameters such as signal strength, etc. For example, U.S. Pat. No. 4,977,399 to Price et al discloses a system which uses a mobile unit, i.e., a van, which includes means for simultaneously receiving radio signals including test data from a plurality of different transmitters and a computer for processing the received test data from the radio transmitters to directly compare the results. As the mobile unit travels, its position is simultaneously recorded by means of a LORAN antenna so that the geographical position information can be directly related to the data transmission. The system is thus able to provide information relating to the range and quality of the radio paging signals as they are received at various sites from a particular mobile station travelling over the varied geographic area.
U.S. Pat. No. 5,023,900 to Tayloe et al discloses a system and method of evaluating the cellular radio coverage of a geographic area serviced by a digital cellular radio telephone communications system. A mobile unit transmits data to a plurality of base stations of the cellular radio telephone communication system within the geographic area and simultaneously transmits information with regard to its specific (longitude, latitude) location. Each of the base stations transmits the information to a central operation maintenance and control unit which includes a computer that processes such information to accurately determine the performance of the cellular phone system as the phone is moved about the particular geographic area under testing.
A further wireless testing method and system is disclosed in U.S. Pat. No. 5,398,276 to Lemke et al which discloses a portable cellular telephone signal strength analyzer which includes a laser range finder with a built-in compass to input data on the geographic locations of the analyzer as it is moved about a specific geographic area, e.g., a shopping mall or office building.
Other United States patents which disclose testing systems for wireless networks and particularly cellular networks include the patent to Knippelmier U.S. Pat. No. 5,425,076 which discloses a measurement module located at a base station that initiates a call to one or more responders at remote locations and monitors the quality of the calls and receptions with a wide variety tests of both engineering parameters and service quality; the patent to Yehushua et al U.S. Pat. No. 5,504,800 which discloses a system for testing cellular phones that includes a series of transmitted and received messages generated in response to each other and which includes a computer which provides a quality evaluation of the transmission/reception; the patent to Siu et al U.S. Pat. No. 5,528,661 which discloses a self-diagnostic test routine for use in generating test signals in remote measurement units which communicate with various subscriber lines in the vicinity and wherein the testing equipment at the remote measuring units are checked periodically or continuously against various preset levels to determine the status thereof; the patent to Hong et al 5,539,804 which discloses a system for monitoring call quality over a plurality of transmission lines with such call quality including signal-and-noise ratios, speech level, noise level, echo characteristics, etc., and which system uses a central computer operating through a public switched telephone network to receive calls from the various transmission lines; and the patent to Kuenzig 5,572,570 which discloses a method of testing a telecommunication system by a sequence of voice and non-voice signals by comparing the responses from the tested systems with predetermined standards.
SUMMARY OF THE INVENTION
With the method and system of the present invention, there is provided a system which can directly compare in side-by-side comparison fashion different types of network communication services or different providers within a single type of network communication service as, for example, a plurality of cellular phone services within a given service area. The testing routines are carried out and the test results are provided with the end user in mind.
Thus, a means is provided at a first location, which may be a mobile vehicle continuously moving through a geographic service area, for sending a first set of identical preselected messages to a second, fixed location through the plurality of network communication services being tested. At the second location a second set of identical preselected messages are sent back to the first location with each of the messages of the second set being sent directly in response to the corresponding received first message. Then, means are provided at each location for quality grading each of the messages received and for providing a score with a comparison of the scores between the various services providing a comparative quality grading for the different communication network services or providers tested.
Additi
Sant Deepak
Spencer Gordon
Bost Dwayne D.
Davis Temica
Emerald Bay Systems, Inc.
Kelly Robert S.
LandOfFree
System for evaluating communication network services does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System for evaluating communication network services, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for evaluating communication network services will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2540354