System for diagnosing, maintaining and reporting the...

Fluent material handling – with receiver or receiver coacting mea – With signal – indicator – recorder – inspection means or exhibitor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C141S083000, C141S099000, C141S100000, C141S104000

Reexamination Certificate

active

06463967

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a system for automatically diagnosing, maintaining and reporting the performance and safety condition of various industrial and transportation devices such as remote power generation or pumping equipment and on- or off-highway vehicles and the like (hereinafter collectively referred to as “apparatus”). More specifically, this invention relates to a cost effective system for diagnosing and maintaining apparatus fluids and components that are lost, consumed or deteriorate during apparatus use, and for documenting and reporting present apparatus condition and maintenance performed in a manner that can allow failed or failing apparatus systems or components to be identified and repairs to be scheduled, that can certify the apparatus' regulatory compliance, that can allow apparatus, apparatus sub-system, or apparatus operator performance to be optimized, or that can allow managing the cost of apparatus operation.
BACKGROUND OF THE INVENTION
Periodic inspections and maintenance is essential for the proper operation and long service life of various apparatus. Inspections can include for example monitoring fluid levels such as engine oil, gear oils, chassis lubricant, coolant, windshield washer, brake and tire-air, as well as monitoring wear components such as brakes and tires, and monitoring other components such as filters and lights that deteriorate or fail due to age or use. Maintenance can include replenishment of consumed or lost fluids, replacement of used fluids, and renewal of items such as cleaning fluid filters for improved apparatus performance and/or longer apparatus life. As used herein, “fluid(s)” or “maintenance fluid(s)” means any non-fuel fluid that can flow through a conduit including liquids, gases, semi-solids, electric current and fine particulates. Examples of liquids are engine oil, grease lubricant, metalworking fluid, hydraulic fluid, coolant, transmission fluid, brake fluid, and cleaning fluid. Examples of gases are air, nitrogen, oxygen, carbon dioxide and refrigerant. Examples of semi-solids are greases. Examples of fine particles are abrasives.
These periodic inspection and maintenance requirements are considered by most to be, at the very least, an inconvenience, and more typically, an unwanted burden of apparatus operation or ownership that add significantly to operating costs. Costs incurred are both direct, (e.g., labor, records keeping and materials, including any waste disposal, of the inspection and maintenance process) and indirect (e.g., lost productivity while the apparatus is being inspected and maintained). In addition to being an unwanted burden to the apparatus owner or operator, many maintenance items, especially those associated with fluids maintenance, can be an environmental burden if the owner or operator does not properly dispose of the used fluids and other maintenance items.
A variety of methods and systems have been disclosed that attempt to minimize the fluid inspection and maintenance burden. One approach is to simply provide the apparatus operator or maintenance provider with a better diagnosis of when maintenance or inspection is required. For transportation apparatus, U.S. Pat. No. 4,847,768, Schwartz et al., July 1989, discloses a system and method for indicating the remaining useful life of engine oil during engine operation based on engine operating parameters. U.S. Pat. No. 5,819,201, DeGraaf, October 1998, discloses a navigation system that displays service reminders at user-defined intervals, and directions to a vehicle service location. A limitation of simply providing information as to when to perform the maintenance or inspection is that this alone does little to relieve the burden of actually performing the maintenance or inspection.
Another approach to minimizing the fluid inspection and maintenance burden is the use of off-apparatus methods and systems to reduce the time or the inconvenience of the fluid inspection and maintenance operations.
For transportation apparatus, U.S. Pat. No. 3,866,624, Peterson, February 1975, discloses a gasoline service lane for a gas station with a recessed service pit that allows a service technician to perform work under the vehicle while the vehicle is being refueled. U.S. Pat. No. 5,787,372, Edward et al., July 1998, discloses an automated system for evacuating used fluid from a fluid receptacle, such as the oil sump of an internal combustion engine, and replenishing with fresh fluid. U.S. Pat. No. 5,885,940, Sumimoto, March 1999, discloses a method for total or partial exchange of lubricant oil when a vehicle stops at a gas station for refueling. Stand-alone quick oil-change facilities also fall into this category of off-apparatus methods and systems. Known art in this off-apparatus approach, in general, reduces the time and, in some cases, the inconvenience of apparatus maintenance and/or inspection. These off-apparatus service methods and systems, however, do not remove the operator or service technician burden of scheduling time for when the maintenance or inspection is to be performed. Nor do they provide a convenient means of tracking and recording the service details for individual apparatus that have service performed at a multitude of locations during the apparatus' operational life.
Another approach to minimizing the inspection and maintenance burden is the use of on-apparatus methods and systems. U.S. Pat. No. 4,967,882, Meuer et al., November 1990, discloses a central lubricating installation that automatically lubricates components at regular intervals and varies the pumping time per each grease application based on the starting current of the pump motor. For transportation apparatus, U.S. Pat. No. 5,749,339, Graham et al., May 1998, discloses an on-apparatus method and system for automatically replacing an engine's used lubricating oil with fresh oil during engine operation based on operating conditions. U.S. Pat. No. 5,964,318, Boyle et al., October 1999, discloses a system and method for sensing the quality of an engine's lubrication oil to diagnose potential engine failure and to automatically replace used oil with fresh oil to maintain oil quality.
In addition, commercial systems are available that provide real-time on-vehicle inspection of tire pressure, brake wear, lighting failure and others to alert the operator or a service technician when service or repair is needed. While on-apparatus approaches potentially offer the best solution to fluid maintenance and inspection burdens, these systems also create other ownership burdens. On-apparatus systems have relatively high cost and, particularly those that maintain fluids, can have large space requirements for reservoirs, pumps and other needed equipment. This creates the burden of substantially higher apparatus cost, which may be acceptable for mission critical or high-value equipment or apparatus, but is unacceptable or not practical for many apparatus. In addition, for on-apparatus fluids maintenance systems, maintenance is not fully eliminated, since the operator or service technician must still fill fresh fluid reservoirs and, in some cases, empty used fluid reservoirs on a regular basis.
Another limitation of on-board systems used with mobile equipment or apparatus is that timely reporting of the system's outputs or actions requires a costly remote communication system that downloads the information, or requires the inconvenience of the apparatus frequently connecting to specialized equipment that communicates with the systems. A timely download of the information is particularly important for apparatus serviced by a central maintenance function that optimizes apparatus performance through analysis of performance, safety and maintenance data.
Another approach to minimizing the fluid inspection and maintenance burden that reduces the cost and space requirements of on-apparatus solutions is the use of on-apparatus/off-apparatus methods and systems. This approach places most of the costly and bulky maintenance and inspection equip

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System for diagnosing, maintaining and reporting the... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System for diagnosing, maintaining and reporting the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for diagnosing, maintaining and reporting the... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2998645

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.