Chemistry: analytical and immunological testing – Optical result – With fluorescence or luminescence
Reexamination Certificate
1998-09-18
2001-09-11
Snay, Jeffrey (Department: 1743)
Chemistry: analytical and immunological testing
Optical result
With fluorescence or luminescence
C436S532000, C422S082080, C422S082110
Reexamination Certificate
active
06287871
ABSTRACT:
TECHNICAL FIELD
This present invention relates to a system and method for determining analyte concentration including an optical detection system that detects fluorescence from fluorescent assays, and a processing system that determines analyte concentration from the fluorescence.
BACKGROUND ART
Biosensor apparatus based on optical detection of analytes by fluorescence of tracer molecules, have attracted increasing attention in recent years. Such apparatus are useful for both diagnostic and research purposes. In particular, biosensors for a solid-phase fluoroimmunoassay, in which a capture molecule such as an antibody or antibody fragment specific to the desired analyte is immobilized on a substrate, and binding of the analyte to the antibody results either directly or indirectly (for example, by means of a labelled tracer) in a fluorescence signal, are becoming an important class of optical biosensor.
In most solid-phase fluoroimmunoassays, to achieve adequate sensitivity a “wash” step is required to remove unbound tracer before measuring the fluorescence. This problem is particularly true for detection of analytes present at concentrations below nanomolar, as is the case for many analytes of interest in body fluids including blood, serum and urine. However, the wash step is tedious, and care on the part of the technician is required to produce repeatable and accurate results. Accordingly, it is highly desirable to provide a fluoroimmunoassay system in which sensitivity to analyte concentrations of 10
−10
to 10
−13
molar or below is achieved without a wash step.
An optical technique known as total internal reflection (abbreviated “TIR”) provides one approach to such a system. Evanescent light is light produced when a light beam traveling in a waveguide is totally internally reflected at the interface between the waveguide and a surrounding medium having a lower refractive index. A portion of the electromagnetic field of the internally reflected light penetrates into the surrounding medium and constitutes the evanescent light field. The intensity of evanescent light drops off exponentially with distance from the waveguide surface. In a fluoroimmunoassay, evanescent light can be used to selectively excite tracer molecules directly or indirectly bound to an immobilized binding agent, while tracer molecules free in solution beyond the evanescent penetration distance are not excited and thus do not contribute “background” fluorescence. The use of evanescent field properties for fluorescence measurements is sometimes referred to as evanescent sensing. For a glass or a similar silica-based material, or an optical plastic such as polystyrene, with the surrounding medium being an aqueous solution, the region of effective excitation by evanescent light generally extends about 1000 to 2000 Å (angstroms) from the waveguide surface. This depth is sufficient to excite most of the tracer molecules bound to the capture molecules (antibodies, receptor molecules, and the like, or fragments thereof) on the waveguide surface, without exciting the bulk of the tracer molecules that remain free in solution. The fluorescence thus resulting reflects the amount of tracer bound to the immobilized capture molecules, and in turn the amount of analyte present.
The tracer fluorescent light will conversely also evanescently penetrate back into the waveguide and be propagated therein. The maximum solution depth for efficient evanescent collection by the waveguide approximates the depth of the region of evanescent penetration into the solution, and thus the waveguide-penetrating portion of the tracer fluorescence can also be used to selectively measure fluorescence from tracer bound to the waveguide surface.
U.S. Pat. No. RE 33,064 to Carter, U.S. Pat. No. 5,081,012 to Flanagan et al, U.S. Pat. No. 4,880,752 to Keck, U.S. Pat. No. 5,166,515 to Attridge, and U.S. Pat. No. 5,156,976 to Slovacek and Love, and EP publications Nos. 0 517 516 and 0 519 623, both by Slovacek et al, all disclose apparatus for fluoroimmunoassays utilizing evanescent sensing principles.
Desirably, an immunofluorescent biosensor should be capable of detecting analyte molecules at concentrations of 10
−12
M (molar) or below. To date, most reports of evanescent-type biosensors indicate that at best, concentrations of 10
−11
M could be detected.
It is further desirable for speed and convenience in “routine” testing, for example testing of blood bank samples for viral antibodies, to have an evanescent immunofluorescent biosensor which is disposable and which provides multi-sample measurement capability. Multi-sample capability would allow a test sample and a control sample (such as a blank, a positive control, or for a competition-type assay, a sample pre-loaded with tracer molecules) to be simultaneously illuminated and measured. Simultaneous multi-sample capability would also speed up the process of analyzing multiple samples and would reduce the effects of variation in the level of exciting light which are known to occur with typical light sources. However, in a typical prior art evanescent light device such as that of Block et al, U.S. Pat. No. 4,909,990 issued Mar. 20, 1990, the waveguide is a fiber optic rod whose shape makes it difficult to build a multi-well biosensor.
Another factor which affects the attainable sensitivity relates to the intensity of excitation light emitted from the waveguide. The intensity of fluorescence emitted by tracer molecules is in part dependent on the intensity of exciting light (which is the evanescent field). Therefore, increased evanescent light intensity should provide increased fluorescence which in turn would improve the detection sensitivity. The level of evanescent light is in turn dependent on the intensity of the light beam propagating in the waveguide, and this can be increased, for a given power in the excitation beam, by decreasing the cross-sectional area of the waveguide.
Previous methods of immobilizing antibodies to optical substrates in evanescent biosensors also present some problems causing reduction in sensitivity. Many such methods utilize the &egr;-amino groups of lysine residues in the protein. This approach has at least two significant disadvantages due to the fact that many proteins have multiple lysine residues. First, the presence of multiple potential coupling sites (multiple lysine residues) results in multiple random orientations of antibodies on the substrate surface. If the substrate-coupled lysine residue is near the N-terminal of the antibody molecule, the antibody's antigen binding site (which is near the N-terminal) may be effectively unavailable for binding of the analyte.
Second, if multiple lysines on the same antibody molecule are coupled to the substrate, the molecule may be subjected to conformational strains which distort the antigen binding site and alter its binding efficiency. For capture molecules immobilized by typical prior methods, generally only 20% or less of the binding sites are functional for analyte binding. Thus, it is desirable to have a site-specific method for coupling of the antibodies or other proteins, so that the capture molecules will be uniformly oriented and available for analyte binding.
Another problem relates to the levels of non-specific binding to the antibody-coated surface of the optical substrate. These levels are often sufficiently high to make detection of analyte at concentrations below about 10
−10
M very difficult. Non-specific binding can be reduced by including a wash step after the sample is incubated with the coated substrate, to remove unbound tracer molecules. However, as previously discussed, a wash step is undesirable. Second, non-specific binding can be a serious problem unless the surface is “passivated” with a masking agent such as bovine serum albumin or with a thin coating of hydrophilic polymer such as poly(ethylene glycol) or poly(methacrylate). Without such passivation (which introduces yet another step into the procedure), non-specific binding can be 50% or more
Christensen Douglas A.
Herron James N.
Snay Jeffrey
TraskBritt
University of Utah Research Foundation
LandOfFree
System for determining analyte concentration does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System for determining analyte concentration, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for determining analyte concentration will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2541649