Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems
Reexamination Certificate
1999-12-06
2002-06-18
Getzow, Scott M. (Department: 3737)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Electrical therapeutic systems
C600S016000
Reexamination Certificate
active
06408205
ABSTRACT:
FIELD OF THE INVENTION
The system and method of this invention relate to systems for treating cardiac fibrillation and, in particular, for using transducers driven at frequencies below the ultrasound range for mechanical treatment of the heart and related target areas.
BACKGROUND OF THE INVENTION
Delivery of electrical shocks has proven to be an effective and relatively safe means for defibrillation of the heart, or for treating various types of cardiac arrhythmias. Implantable defibrillators, cardioverters, and combined pacemaker/cardioverter/defibrillator devices have come into widespread use for treatment of various arrhythmias. As effective as these new devices and systems have been, there remain a number of areas where substantial development work is needed, in order to increase efficiency and reliability, and to deal with known adverse effects. Some of the known problem areas are those of tissue damage in the vicinity of the electrodes across which the shocks are delivered, and in the case of atrial defibrillation, the patient sensation of sharp pain which can be caused by over-stimulation of the phrenic nerve. Despite improvements in lead and electrode design, there remains an ongoing need to reduce the amount of energy delivered in a shock, both for purposes of preserving the battery energy in the implanted device and for the important purpose of reducing patient anxiety about receiving a shock.
One alternative approach to the area of defibrillation that has been considered but not given much development is using ultrasound for defibrillating. This involves delivering high energy ultrasound waves to the affected region, e.g., the atrium or ventricle. Unfortunately, this technique has thus far met with a low success rate, on the order of 30%, and has been seen to cause damage to the endothelium and to the cardiac muscle fibers. However, it is the basis of this invention that lower frequency mechanical agitation of the heart has a variety of potential beneficial effects which have not yet been successfully exploited, particularly in treating a fibrillating heart or a heart which is prone to fibrillation or other arrhythmias. Mechanical agitation of the heart, particularly at frequencies below about 50 kHz, can have a direct defibrillation effect, as well as other beneficial effects on the fibrillating heart. Mechanical agitation, or movement of the cardiac muscle with sufficient energy can change the conductive properties of the muscle, and thus change the loop gain and disrupt the circular conductive paths which had been responsible for the fibrillation or other arrhythmia. Likewise, mechanical agitation may affect action potential duration of myocardial cells, and thus aid in termination of fibrillation. Mechanical agitation directed to the cardiac muscle may facilitate muscle fiber relaxation, and help bring the fibers into diastole. This, in turn, can reduce the threshold for electrical defibrillation. Similarly, mechanical treatment may be used to improve cardiac perfusion. It is known that perfusion of the myocardium is limited to the diastolic phase, and that during fibrillation perfusion stops even though the aortic pressure remains high for a few seconds. Application of low frequency mechanical waves to the myocardium can have a relaxing effect which improves perfusion, as well as a direct massaging effect which aids perfusion.
In addition to direct mechanical treatment of the heart, mechanical vibration of the lungs may also be used to treat a fibrillation problem. Low frequency vibration is known to improve gas exchange in the lungs. Since oxygen supply and carbon dioxide are critical in a fibrillation condition, such mechanical vibration to provide enhanced gas exchange in the lungs is supportive of and beneficial to defibrillation. Further, depending upon the precise effects of the low frequency waves at the air-tissue interface in the lungs, such waves may have the property of stimulating the pulmonary stretch receptors. This will, via the cardio-pulmonary reflex, result in parasympathetic output (n.Vagus) in the heart and contribute to suppressing fibrillation. In view of these considerations, it is seen that there is substantial potential for therapeutic application of implantable low frequency mechanical wave devices for treating arrhythmias, particularly fibrillation and transient ischemic heart disease.
SUMMARY OF THE INVENTION
It is an overall object of this invention to provide a system and method for utilizing mechanical waves for treating a cardiac condition such as fibrillation by delivering the low frequency waves to at least a part of the patient's area comprising the heart and lungs, the mechanical wave treatment being utilized either alone or in combination with electric shock therapy.
In accordance with the above object, there is provided an implantable system and method for treating cardiac fibrillation and like conditions, involving delivery of mechanical waves to the patient's heart and/or lungs, the waves being in a frequency range of about 1-50,000 Hz and being generated by one or more transducers positioned within the patient's body for delivery of the waves to the target patient area. For example, the system may comprise a lead with a plurality of transducers adapted for positioning in the patient's atrium, and for mechanically treating the atrium. In another embodiment, the waves are directly transmitted to the outside surface of the patient's heart. Alternately, one or more wave transducers driven by the mechanical wave generator or generators may be positioned for delivering waves to the patient's lungs, or to portions of the lungs and the heart. The implantable system includes sensing electrodes for sensing the patient's natural cardiac activity, as well as cardiac responses to stimulation, and for controlling the wave treatments to be delivered at timed intervals with respect to the patient's cardiac signals and/or in timed relation to generated defibrillation or cardiac pulses delivered to the patient.
The invention thus embodies a system and method for providing mechanical treatment alone, or coordinating mechanical treatment of the patient's heart and/or lungs with defibrillation shock treatment delivered by a defibrillation pulse generator housed within the implanted system. The implanted system preferably has detection means for analyzing the patient history, detecting the timing and nature of arrhythmias, and for selecting an appropriate treatment in the form of a selected combination of mechanical wave treatment and defibrillation/cardioversion shock treatment.
REFERENCES:
patent: 4265228 (1981-05-01), Zoll
patent: 5433731 (1995-07-01), Hoegnelid et al.
Renirie Alexis
Schouten Vincent
Weijand Koen
Berry Thomas G.
Getzow Scott M.
Medtronic Inc.
Woods Thomas F.
LandOfFree
System for delivering mechanical waves does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System for delivering mechanical waves, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for delivering mechanical waves will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2932872