Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...
Reexamination Certificate
2000-04-17
2003-05-06
Casler, Brian L. (Department: 3763)
Surgery
Means for introducing or removing material from body for...
Treating material introduced into or removed from body...
C600S365000, C607S072000
Reexamination Certificate
active
06558345
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to systems for treatment of non-insulin-dependent diabetes mellitus and, in particular, systems for stimulating the pancreas to enhance sensing of beta-cell electrical activity, from which a measure of patient blood glucose level is obtained.
BACKGROUND OF THE INVENTION
It is known, from statistics published in 1995, that the number of diabetes patients in the United States is 7.8 million, or about 3.4% of the total U.S. population. This number has been steadily rising over the last 25 years. Approximately 90%, or about 7 million, are non-insulin-dependent diabetes mellitus (NIDDM) patients, in whom the sensitivity to rising glucose levels, or the responsiveness of insulin, is compromised to varying degrees. About 30%, or 2.3 million these patients, use insulin, and about 25% of these insulin users take daily measures of blood glucose levels. As a general proposition, most NIDDM patients are candidates for blood glucose level measurements and/or injections of supplemental insulin. The percentage of NIDDM patients receiving insulin treatment increases with the duration of NIDDM, from an initial rate of about 25% to about 60% after 20 years. For this population of patients, there is a need for a flexible and reliable system and method for measuring glucose level and supplying insulin when and as needed.
The human pancreas normally provides insulin for metabolic control. Basically, the insulin acts to promote transport of glucose in body cells. The pancreas has an endocrine portion which, among other functions, continuously monitors absolute blood glucose values and responds by production of insulin as necessary. The insulin-producing cells are beta cells, which are organized with other endocrine cells in islets of Langerhans; roughly 60-80% of the cells in an islet are such beta cells. The islets of Langerhans in turn are distributed in the pancreatic tissue, with islets varying in size from only about 40 cells to about 5,000 cells.
It has been observed that neighbor beta cells within an islet are coupled by gap junctions, which allow for electrical coupling and communication between neighboring beta cells. The beta cells within the islet undergo periodic depolarization, which is manifested in oscillatory electrical spikes produced by the beta cells, often referred to as a burst which carries on for a number of seconds. The beta cell electrical activity is characterized by a low frequency alternation consisting of a depolarized phase (the burst) followed by a repolarized or hyperpolarized phase which is electrically silent. The relative time spent in the depolarized phase, during which the relatively higher frequency beta cell action potentials are triggered, has a sigmoidal relation with blood glucose concentration. The duty cycle, or depolarization portion compared to the quiet portion, is indicative of glucose level, and thus of insulin demand. Additionally, the frequency of the spikes during the active period, and likewise the naturally occurring frequency of the bursts (also referred to plateaus) carries information reflective of glucose level.
In view of the above, it is to be seen that sensing of the beta cell activity from islets of Langerhans in the pancreas may provide information for sensing insulin demand and controlling insulin delivery. Systems which seek to utilize glucose-sensitive living cells, such as beta cells, to monitor blood glucose levels, are known in the art. U.S. Pat. No. 5,190,041 discloses capsules containing glucose-sensitive cells such as pancreatic beta cells, and electrodes for detecting electrical activity. The capsules are situated similarly to endogenous insulin-secreting glucose-sensitive cells, and signals therefrom are detected and interpreted to give a reading representative of blood glucose levels. However, in this and other similar systems, the problem is in reliably sensing the beta cell electrical activity. It is difficult to determine the onset of the burst phase, and accurate determination of the spike frequency is difficult. This sensing problem is aggravated by cardiac electrical interference, as sensing of the QRS can mask portions of the islet electrical activity, particularly the onset of the burst depolarization phase. Thus, there is a need for a system which effectively and reliably utilizes the body's own glucose-monitoring system for obtaining accurate information concerning blood glucose level and insulin demand. Additionally, it is very desirable to provide for an effective response to rising insulin demand by activating an insulin pump, or by enhancing pancreatic insulin production.
SUMMARY OF THE INVENTION
It is an object of this invention to provide a system for improved sensing of pancreatic beta cell electrical activity, so as to determine insulin demand, i.e., blood glucose level. The system includes a stimulus generator for stimulating the pancreatic beta cells with electric field stimuli so as to provide synchronized burst responses which are relatively free of signal interference and which can be accurately timed. It is a further object of this invention to provide systems for sensing insulin demand and for responding by delivering insulin from a pump, or by stimulating the pancreas to cause increased insulin production by the pancreas (as disclosed in concurrently filed application Ser. No. 08/876,610 case P-7328, incorporated herein by reference).
In view of the above objects, there is provided a system and method for improved insulin delivery for an NIDDM patient. The system is based on sensing in-vivo pancreatic beta cell electrical activity, as an indictor for insulin demand. In a first embodiment, a pancreatic stimulus generator is controlled to deliver synchronized stimulus pulses, i.e., electric field stimuli, to the patient's pancreas at a slow rate, e.g., once every 6-20 seconds. Following a generated electric field stimulus, the depolarization activity of the cells is sensed and processed to derive an indication of blood glucose level. The system monitors cardiac activity, and controls the delivery of stimulus pulses so that the onset of each beta cell burst is relatively free of interference of the heart's QRS complex. The blood level information obtained from the sensed beta cell activity can be used for automatic control of an insulin pump. In another embodiment, the electric field stimuli are delivered to transplanted pancreatic beta cells in order to enhance insulin production, as disclosed in referenced Ser. No. 08/876,610. In yet another embodiment, the vagal nerve is stimulated to synchronize.
The blood glucose level monitoring may be carried out substantially continuously by an implantable system, or the system may be programmed for periodic measurement and response. In another embodiment, measurements may initiated by application of an external programmer, e.g., a simple hand-held magnet. In yet another embodiment of the invention, blood glucose level may also be monitored by another sensor, such as by examining EKG signals or nerve signals, and the system responds to insulin demand by controlling delivery of insulin from an implantable pump or by stimulating the pancreatic beta cells to enhance insulin production directly by the pancreas, also as disclosed in referenced Ser. No. 08/876,610.
REFERENCES:
patent: 4003379 (1977-01-01), Ellinwood, Jr.
patent: 4403984 (1983-09-01), Ash et al.
patent: 4431004 (1984-02-01), Bessman et al.
patent: 4704029 (1987-11-01), Van Heuvelen
patent: 5101814 (1992-04-01), Palti
patent: 5113859 (1992-05-01), Funke
patent: 5165407 (1992-11-01), Wilson et al.
patent: 5190041 (1993-03-01), Palti
patent: 5231988 (1993-08-01), Wernicke et al.
patent: 5362307 (1994-11-01), Guy et al.
patent: 5368028 (1994-11-01), Palti
patent: 5474552 (1995-12-01), Palti
patent: 5540734 (1996-07-01), Zabara
patent: 5995860 (1999-11-01), Sun et al.
“Kinetics of Intraperitoneally Infused Insulin in Rats—Functional Implications for the Bioartificial Pancreas”—Paul De Vos et al. (Diabetes, vol. 45, Aug. 1996).
Pancreatic Beta
Houben Richard P. M.
Renirie Alexis C. M.
Weijand Koen J.
Berry Tom G.
Casler Brian L.
Medtronic Inc.
Rodriguez Cris
Waldkoetter Eric R.
LandOfFree
System for delivering insulin does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System for delivering insulin, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for delivering insulin will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3045678