Computer graphics processing and selective visual display system – Computer graphics processing – Three-dimension
Reexamination Certificate
1998-05-18
2002-03-26
Vo, Cliff N. (Department: 2671)
Computer graphics processing and selective visual display system
Computer graphics processing
Three-dimension
C345S428000
Reexamination Certificate
active
06362817
ABSTRACT:
COPYRIGHT NOTICE
A portion of the disclosure recited in the specification contains material which is subject to copyright protection. Specifically, a Microfiche Appendix in accordance with 37 CFR Section 1.96 is included which lists source code instructions for a process by which the present invention is practiced in a computer system. The Appendix includes 4 fiches having 377 frames, or pages, of source code. The copyright owner has no objection to the facsimile reproduction of the specification as filed in the Patent and Trademark Office. Otherwise all copyright rights are reserved.
BACKGROUND OF THE INVENTION
This invention relates generally to computer graphics processing and more specifically to the creation and display of a three-dimensional environment generated by a computer system using a symbolic map description of the environment downloaded from a network.
The Internet has established itself as a world-wide information resource. It is also growing rapidly as a resource for commerce and entertainment. Essentially, this has been brought about by the development of the World Wide Web (“WWW” or simply “Web”) which provides presentations of text, images and sound on Web “pages.” Not only have Web pages received wide acceptance because of their effectiveness in presenting information, but the simplicity and ease of creating, or “authoring,” Web pages has ensured their widespread use throughout the Internet.
One reason that authoring of Web pages is so easy is that the language used to create a Web page uses simple plain-text words and syntax. Thus, Web page authoring is easy for non-technical designers to understand. Unlike prior languages which allowed powerful control over computer information processing and presentation, authoring a Web page does not require computer programming knowledge. Since the language format is represented as plain-text it can easily be edited in a standard word processor as opposed to a dedicated application or user interface such as a computer-aided design or publishing system. Also, the language is compact and results in very short files that can be quickly downloaded from a “server,” or provider computer, to a user's “client” computer.
Web pages are written in Hyper-Text Markup Language (HTML). HTML, commonly referred to as “hyper-text,” allows authors to design web pages by using “tags” to specify the page layout and style. For example, the font size, indentation, number of columns, etc. can be specified for text. Also, graphical effects such as the background pattern and color, placement of images, animations, etc., can be specified. An important feature of hyper-text is that, hyper-links can be defined. A hyper-link allows a Web page to “link” to another page. When a viewer, or user, of a computer system points and clicks on an item in a first Web page a linked, or referenced, second page is displayed in place of the first page. This powerful referencing mechanism allows information to be associated with other information among Web pages located anywhere throughout the entire world.
Another standard that is part of the design of the Web provides for identifying and accessing each page, or other object, by using a unique address called a Uniform Resource Locator (URL). The format of the URL allows any object on any server that is part of the Internet to be accessed by other computers. Not only can Web pages be accessed in this manner, but pictures, animations, movie clips, sounds, etc., can be referenced and displayed within a Web page or by other means through various computer programs executing on a user's computer.
Each of the above features of the World Wide Web, that of HTML standardization, ease of Web page authoring, hyper-link referencing, quick downloading and universal addressing scheme have served to make the Web useful and popular. “Browsing” of Web pages has been made simple by the popularity of browser programs that display Web pages in a point-and-click interface that is mostly provided by the Web page layout, itself.
However, a shortcoming of today's Web page-based information is that it is strictly 2-dimensional. A Web page is analogous to a printed page in that text and images are laid out adjacent to each other. Even though computers are capable of detailed 3-dimensional simulation, this type of presentation is virtually nonexistent in Internet applications because of limitations in the speed with which data can be transmitted from a server computer to a client computer. On today's Web pages only limited ways of performing animations are possible, such as animated “.gifs,” server “push,” client “pull” and other animation techniques that allow small windows of choppy animation. Other techniques such as MPEG compression and playback, or streaming formats attempt to provide television-like delivery of information. However, all of these approaches result in very small windows of animation that tend to have low frame rates. Further, these delivery methods are very non-interactive. That is, these methods provide little more than a way to insert small snippets of an animated sequence into a Web page. Typically, the animation will play continuously, in a “looped” fashion, or until the user decides to stop the playback.
While a Web page, and the animation methods discussed so far, are adequate for presenting many types of information they are not as effective for certain applications sometimes referred to as a “full-immersion,” or an interactive 3-dimensional simulation. Such technology allows a user to move about at will in a 3-dimensional world, or environment, viewed through the display screen of the computer. A user is able to move around in, look at and interact with objects in the 3-dimensional environment much as they would in the actual physical world. Not only is such a technique able to convey certain types of information, for example, architectural, landscaping, urban planning, etc., but it is more entertaining, and can be more intuitive, than the traditional printed page approach to presenting information on the Web.
A prior approach to providing a 3-dimensional simulated environment on the Web, used a language called virtual reality markup language (VRML). A specification for VRML can be found in “A BEGINNER'S GUIDE TO VRML” at http://home.netscape.com/eng/live3d/howto/vrml_primer_toc.html Although the goal of VRML is to provide a 3-dimensional environment easily created and used by authors and users of the Web, it has failed to gain acceptance because of some major shortcomings.
One shortcoming of VRML is that defining 3-dimensional structures, and placing those structures in a 3-dimensional environment is complex. VRML requires an author to specify objects in terms of shapes such as a cube, sphere, cone and cylinder. Placement of objects is by x, y, z distances. Thus, not only is a high degree of geometric knowledge and thought required in order create even the simplest 3-dimensional world, but piecing together shapes in order to make an object requires experience with computer aided modeling techniques. Because of the format that VRML uses, it is not possible to look at a VRML page description and immediately understand the layout of the 3-dimensional world.
Another shortcoming of the VRML approach is that complex custom viewers are necessary to interpret the VRML page in order to generate the screen displays simulating the 3-dimensional world. Because of the complexity of the VRML language, VRML viewers tend to be large and require processing and memory resources of the computer system on which they execute. Although at the time of initial excitement of VRML many such viewers were promised, few actually materialized. As the World-Wide Web stands today there is a near-complete lack of 3-dimensional simulation in Web pages.
Thus, it is desirable to provide a 3-dimensional simulation system for the Internet (or any bandwidth limited network) and specifically the World-Wide Web. Such a system should provide easy authoring of 3-dimensional worlds. The system should also provide for fast and e
Powers Michael
Stephens Philip
IN3D Corporation
Kulas Charles J.
Stevenson Philip H.
Townsend and Townsend / and Crew LLP
Vo Cliff N.
LandOfFree
System for creating and viewing 3D environments using... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System for creating and viewing 3D environments using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for creating and viewing 3D environments using... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2816472