Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Vehicle subsystem or accessory control
Reexamination Certificate
2002-07-19
2003-11-18
Marc-Coleman, Marthe Y. (Department: 3661)
Data processing: vehicles, navigation, and relative location
Vehicle control, guidance, operation, or indication
Vehicle subsystem or accessory control
C701S070000, C701S071000, C303S140000, C303S147000
Reexamination Certificate
active
06650979
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a system for controlling vehicle components, e.g., for steering a vehicle, according to the “Drive by Wire” principle.
BACKGROUND INFORMATION
The fundamental characteristic of a “Drive by Wire” vehicle is that a direct, mechanical connection exists neither between the foot controls and the corresponding components (gas, brake, clutch), nor between the steering wheel and the wheels coupled to it. The control measures taken by the driver are no longer directly converted into mechanical displacements, but are picked up by sensors at the pedals and the steering wheel, electronically processed by control computers, and transmitted as an electrical, controlled variable to the corresponding actuators.
The advantages of a “Drive By Wire” system include, inter alia, the increase in passive safety, since, e.g., the elimination of a steering column excludes it from intruding into the vehicle interior. In addition, the comfort of the vehicle can be improved, because, e.g., it is possible to freely select the restoring torque at the steering wheel and vary the transmission ratio between the steering wheel and the wheels coupled to it. There are also design advantages. This facilitates, for example, the construction of right-hand/left-hand steering designs, as well as their selection, and also facilitates the conversion to driving-school vehicles or disabled-friendly vehicles. Furthermore, “Drive By Wire” systems simplify the system integration of devices such as a vehicle stability control system, anti-lock braking system, traction control system, automatic speed control, etc., which means that the costs can be correspondingly reduced.
On the other hand, a “By Wire” system has, however, the problem that a transition into a safe state is not ensured in the event of a fault in one of its components. In contrast to, e.g., conventional power-assisted steering, which still retains the basic steering function in the event of a fault that leads to the failure of the servo assistance of the steering, the malfunction of a component in a “By Wire” system can have fatal consequences if design or conceptional safety measures are not taken.
A hydraulic steering device is described in U.S. Pat. No. 4,771,846. The hydraulic steering device is supplied with pressurized hydraulic fluid by a pump, via a proportional valve. The proportional system is controlled with the aid of an electromagnet, using signals picked up by a steering-angle sensor. In this context, the proportional valve is controlled so that the value specified by the steering-angle sensor is set at the steered wheels. In this case, it is disadvantageous that the entire steering system fails when the proportional valve ceases to operate.
A further steering system is described in German Published Patent Application No. 35 36 563, where the movement of a steering handwheel starts an electric motor, using switching electronics. The electric motor drives a pump, which is connected to working chambers of a working cylinder. In this context, the rotational direction of the pump determines the direction in which the working cylinder is displaced. This system is also not redundant and runs the risk of complete failure.
In addition, German Published Patent Application No. 40 11 947 describes a steering system for two steerable wheels, where the wheels can be steered independently of each other. The individual wheels are driven by a servomotor, which is powered by an electronic control unit. In this case, there is also the danger of the vehicle no longer being steerable in response to the servomotor or the electronic control unit failing.
A steering system, which controls at least two independent motors with the aid of at least two independent control units, is described in German Published Patent Application No. 42 41 849. Safe operation is ensured by fault monitoring and redundancy in the motors. A fault-monitoring device prevents a defective control unit from controlling the steering elements. However, it is disadvantageous that incorrect steering is triggered by any undetected faults in the control units.
It is an object of the present invention to provide a “Drive By Wire” system, e.g., for steering a vehicle, which passes over into a safe operating state in the event of one of its components malfunctioning in a manner that is critical with regard to safety.
SUMMARY
This object is achieved by providing a system as described herein. One example embodiment of the system of the present invention accordingly includes at least one steerable wheel, a steering wheel or equivalent steering device, an odd number of more than one intercommunicating control computers which are each connected to at least one first sensor detecting a movement or actuation of the steering wheel or steering device and to at least one second sensor directly or indirectly detecting the position of the at least one steerable wheel, a first actuator and a second actuator which are each mechanically coupled to the at least one steerable wheel and may each be controlled by one of the control computers, a first voter-basis discriminator that is assigned to the first actuator, and a second voter-basis discriminator that is assigned to the second actuator. Each of the control computers transmits a first signal to the first voter-basis discriminator and a second signal different from the first signal to the second voter-basis discriminator. The actuator, the assigned voter-basis discriminator of which receives the first signal from the majority of the control computers, is actively controllable by its assigned control computer. Using model calculations and the measured values acquired by the sensors, the control computers ascertain their own state and the state of the system and, in each case, effect a switchover from the active control computer to the control computer assigned to the other actuator if the system function shows deviations from the model expectations of a majority of the control computers.
Therefore, the system components that are critical with regard to safety are configured with redundancy so that, in the case of a malfunctioning component, the system automatically switches over to a corresponding component that works correctly. In the control computers, a routine may be implemented which allows each controlling, control computer to formulate and transmit a switchover request to the other control computers, whereby the other control computers change their signals received by the voting-basis discriminators, so that another control-enabled control computer assumes control in the system, by then controlling the actuator assigned to it.
An example embodiment of the system according to the present invention provides for the control computers intercommunicating via a CAN bus. This may be advantageous, since a CAN bus operates in a substantially fault-tolerant manner, and independently of the CPU.
Another example embodiment of the system according to the present invention is characterized in that the actuators each possess a hydraulic control unit having a double-acting steering cylinder, the two cylinder chambers of each steering cylinder being interconnectable by a steering bypass valve. In each case, this arrangement may allow one of the redundant steering cylinders to be switched on or switched off in a simple and reliable manner. In this context, the voter-basis discriminators control the steering bypass valves and thus establish which hydraulic circuit is active at any one time.
Another example embodiment of the present invention provides for the pressure in each of the two cylinder chambers of the dual-acting steering cylinder being adjustable, using a proportional valve, a separate pressure sensor being connected to each of the two cylinder chambers. In this context, each steering cylinder may be assigned its own pump for providing the necessary supply pressure.
The outlet of the pump may be connected to a pressure reservoir, via a non-return valve. Therefore, the pump may not be continuously run during the operat
Kenyon & Kenyon
Marc-Coleman Marthe Y.
Volkswagen AG
LandOfFree
System for controlling motor vehicle components according to... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System for controlling motor vehicle components according to..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for controlling motor vehicle components according to... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3170381