Computer graphics processing and selective visual display system – Display peripheral interface input device – Cursor mark position control device
Reexamination Certificate
2000-11-13
2004-03-09
Hjerpe, Richard (Department: 2674)
Computer graphics processing and selective visual display system
Display peripheral interface input device
Cursor mark position control device
C345S007000, C345S008000, C345S009000, C345S156000, C345S157000, C345S168000, C345S175000
Reexamination Certificate
active
06703999
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATIONS
Not applicable.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to user interfaces for computers, and in particular to computer user interfaces suitable for mobile environments, such as a transport vehicle.
2. Background Information
As information technologies continue to develop, new information technology applications will probably continue to find their way into motor vehicles. CD and DVD players, telephones, Global Positioning System (“GPS”) based navigation, television and Internet access have already been incorporated into some vehicles.
Interacting with any such system results in a tradeoff with the time the user spends concentrating on driving. As such, it is of increasing importance to develop systems in which the driver can interact with the vehicle systems in a safe and efficient manner.
GPS based navigation systems have been problematic to safely and efficiently incorporate into motor vehicles. Typically, GPS navigation systems require a relatively large amount of information to be entered to make use of its features, making the question of driver interface of greater importance. Users may need to input destination addresses, often several letters long, thus requiring a significant amount of the user's time and attention to input. If the driver must perform this task while driving, any attention given to the navigation system means that less attention is given to actual driving of the vehicle.
GPS navigation is available to the general public, although to a lesser extent in the USA as compared to Japan. Japan has addressed the growing problem of driver distraction with a law that essentially requires any use of multimedia systems in motor vehicles to be performed while the driver maintains both hands on the steering wheel.
Current commercial navigators show that most input systems are based on a four to eight key directional key-pad to select choices from a menu. This input mode is sometimes augmented by a voice recognition system. However, demonstrations of the voice-recognition systems, including tests of personal computer (“PC”) based software as well as actual voice-recognition equipped navigators, has shown some unreliability. Environmental background noise in a vehicle is generally more severe than in an office. Hence, there is a greater tendency for error in voice-recognition systems when used in vehicles, relative to an office environment.
For compliance with the law, it appears that current commercially available motor vehicle navigation systems in Japan, will require the user to enter information while the vehicle is stationary. This detracts considerably from the usability of the system. Assuming no passenger is present to operate the navigation system for the driver, a destination change in-route requires stopping the vehicle. If the motor vehicle is proceeding along a freeway, this would be a nontrivial waste of time.
The navigator is a representative system with basic needs for input, feedback, and output. Devices such as the radio and CD player, while perhaps less demanding than a GPS navigator, also pose interaction problems. As Internet access becomes more widely available in motor vehicles, other situations are likely to arise have more demanding requirements. Accordingly, there is a need for an improved interface between a driver and motor vehicle systems.
SUMMARY OF THE INVENTION
A preferred method or system of providing a computer user interface in a transport vehicle having a steering wheel, results in improved safety and efficiency for a user to simultaneously drive and enter input. In this regard, the system includes defining an open area proximate the vehicle steering wheel as a virtual control panel for user action or input. The user enters inputs by contacting the area, such as by inserting a fingertip or thumb into selected sections of the area. As the area is proximate the steering wheel, the user has the ability to operate the vehicle and enter inputs without removing his or her hands from the steering wheel.
The system includes monitoring the area with a sensor, which produces electronic information corresponding to user action in the area. Computer logic thereafter processes or analyzes electronic information from the sensor. The logic preferably determines from the electronic information, a location of user action in the area, and the type of action, and designates the user action as a particular input according to the location and action. Based on the designation, the computer produces output signals as appropriate.
For aiding the sensor in detecting user action in the area, the system further includes an energy source disposed for producing a sensing field substantially along the area when the energy source is operated. In a preferred embodiment, the energy source is a series of light emitting diodes oriented for radiating a screen of infrared light along the area. The screen of infrared light provides illumination for the sensor and defines the area for detection of user action therein.
Infrared light is used for the light screen because light in the infrared region is essentially invisible to unaided human eyesight. A sensing field formed from a screen of light invisible to the user results in greater interface transparency and reduces user distraction.
Provision of the screen of infrared light includes orienting the screen with the light forming the screen, radiating upwardly relative to the vehicle. The upward orientation improves reliability in detecting user action in the area by reducing noise due to infrared light in sunlight. Specifically, most sunlight radiating around the steering wheel during driving, enters the vehicle through the front windshield in a generally downward direction. To at least some extent, the upward orientation of the infrared light screen thereof allows the sensing field to be directionally distinguishable from sunlight radiating downward into the vehicle.
The system further includes mounting a vibrator at a location proximate the user when the user is positioned for driving the vehicle, such as on the steering wheel and/or in the driver's side seat. The vibrator is then selectively operated via the computer for providing computer feedback to the user. The vibrator advantageously provides haptic feedback (feedback relating to or based on the sense of touch) for relieving the visual load on the user. As safe driving involves visual vigilance to a large degree, relieving the driver's visual load improves safety. Additionally, permitting the driver to enter input while keeping both hands on the steering wheel, also relieves the driver's visual load.
The system further includes provision of a display electronically connected to the computer. The computer includes logic, which when executed by the computer, causes a map to be shown on the display, indicating locations of predefined sections with the area, and information corresponding to each predefined section that will be designated as input from the user if the performs an action in that predefined section.
The display is preferably presented to the user at a location that does not require the user to look away from the vehicle's forward path of travel, when the user is driving the vehicle, such as a heads-up display. Alternatively, the display is at a location and orientation, easily observable by the vehicle operator when driving, such as on the vehicle dashboard or instrument panel. Thus, the user can simultaneously drive and observe the display, without substantial aversion of his or her eyes from the forward direction of vehicle travel while driving.
REFERENCES:
patent: 5288078 (1994-02-01), Capper et al.
patent: 5414439 (1995-05-01), Groves et al.
patent: 5825351 (1998-10-01), Tam
patent: 5914709 (1999-06-01), Graham et al.
patent: 5977867 (1999-11-01), Blouin
patent: 6262848 (2001-07-01), Anderson et al.
patent: 6333735 (2001-12-01), Anvekar
patent: 6373
Chang Hsin-Wang Wayne
Iwanami Hiroyuki
Lin Han
Xia Liba
Xue Feng
Hjerpe Richard
Nguyen Jennifer T.
Oliff & Berridg,e PLC
Toyota Jidosha & Kabushiki Kaisha
LandOfFree
System for computer user interface does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System for computer user interface, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for computer user interface will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3185362