Exercise devices – Gymnastic – Arm or hand type climbing arrangement
Reexamination Certificate
1999-10-21
2001-05-15
Crow, Stephen R. (Department: 3764)
Exercise devices
Gymnastic
Arm or hand type climbing arrangement
Reexamination Certificate
active
06231482
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to climbing training equipment. The invention relates more particularly to a climbing wall training apparatus of the type having a continuous rotating wall surface adapted for climbing.
2. Description of the Related Art
In providing training opportunities for climbers it has been recognized that man-made climbing surfaces located in convenient locations are advantageous. Accordingly many stationary climbing wall surfaces have been constructed throughout the world so as to be accessible to climbers. In order to provide satisfactory training, relatively high stationary climbing walls are usually required. These involve a very large structure, and if enclosed and isolated from the weather, a further large structure is required for this isolation purpose as well. These later considerations limit the places where climbing walls of this type can be located.
Provision of a continuous rotating wall surface allows the climbing training wall to be greatly reduced in height, and in effect can provide a simulation of ascending any height desired by sufficient rotation of the continuous wall surface. Moreover, such a reduction in size allows climbing training in existing buildings of conventional design without extensive modification. Moreover, greatly reduced cost characterizes such training apparatus when compared with necessarily large stationary walls. Safety is enhanced as the climber does not ascend to a great height and belay or other provisions to prevent falls of dangerous extent need not be required. Usually only a simple safety mat to cushion such short falls as may be experienced need be provided.
Difficulties in providing such a continuous rotating climbing surface for training have been encountered. Particularly, known devices generally do not provide a great deal of adjustability in positive and/or negative inclination. Some training walls have characteristics making training less effective, for example undesired play or give in the climbing surface due to deflections of components of the device under stresses applied during use.
Moreover, generally the rotating climbing wall of prior equipment was either fixed or required manual adjustment of the angle of inclination of the climbing surface. The user generally is required to stop climbing and either make adjustments or wait for others to make them before continuing climbing at a different angle of inclination. This interrupts training and decreases the similarity of training to a real climb is therefore undesirable.
These difficulties having been recognized, the present invention is directed to providing, at a reasonably low cost, a climbing training apparatus with improved operational characteristics.
SUMMARY OF THE INVENTION
The present invention accordingly provides a climbing trainer comprising:
a support frame;
a pivoting frame having first and second ends and a pivot axis intermediate the first and second ends, the pivoting frame being pivotably supported by the support frame allowing relative rotational movement about the pivot axis between the pivoting frame and the support frame;
a pivot actuator selectively allowing and preventing relative rotational movement between the support frame and the pivoting frame about the pivot axis and rotationally moving said pivoting frame with respect to said support frame whereby the inclination of said pivoting frame can be selectively fixed;
a movable climbing training wall surface comprising a continuous belt having an outer surface adapted to incorporate climbing holds, said continuous belt being carried by and rotatable about said pivoting frame, the continuous belt being restrained from movement transverse to a plane of the climbing training wall surface so as to resist forces tending to pull climbing holds incorporated in the outer surface of the continuous belt away from the wall surface and those tending to push said holds towards the wall surface, the climbing training wall surface being moveable in a direction parallel to a plane defined by the training wall surface by rotation of the continuous belt about said pivoting frame, said continuous belt being formed of a plurality of interlinked panels hinged together so as to be in force transmitting contact along the hinges between panels so as to transfer forces other than moment forces about axes parallel to an axis of rotation of a hinged connection between panels;
a first spindle;
a second spindle, said first and second spindles rotatably carried by the pivot frame at the first and second ends respectively of said pivot frame and rotatable about two parallel axes, the continuous belt comprising said climbing training surface being disposed about said spindles and bending about said two parallel axes, and wherein the continuous belt is stiffened to resist bending about a further axis orthogonal to said two parallel axes about which the first and second spindles rotate, and
an wall surface actuator adapted to rotate said continuous belt about the pivoting frame, whereby the climbing training wall surface is moved to provide a simulated climb, the inclination of the climbing training wall surface being adjustable by rotation of the pivotable frame over a range of inclinations including negative inclinations.
In a more detailed aspect, the continuous belt comprising said climbing training surface being disposed about said spindles and bending about said two parallel axes is stiffened to resist bending about a further axis orthogonal to said two parallel axes about which the first and second spindles rotate. In a further detailed aspect the continuous belt further comprises a multiplicity of rotatably interlinked panels, each being rotatable with respect to another about an axis parallel to said two parallel axes about which said first and second spindles rotate, and configured to mitigate unintentional engagement of the training wall surface with things which would otherwise be caught and moved with said wall surface by minimizing opening and closing of voids between said rotationally interlinked panels. The climbing trainer can further comprise at least one interchangeable hold releasably affixed to one of said rotationally interlinked panels.
In another detailed aspect the actuator can comprise a variable speed motor coupled to at least one of said first and second spindles, said climbing trainer further comprising a speed control operable from said continuous climbing surface, said speed control being adapted to vary the speed of the motor. Moreover, the climbing trainer can include an emergency safety kill switch operable from said continuous climbing training surface and adapted to stop movement of said belt about said pivoting frame and can also stop relative rotational movement between said pivoting frame and said base frame.
In a still further more detailed aspect the rotatably interlinked panels can be extrusions having first and second sides comprising an inner hinge portion having an outer cylindrical configuration at the first side and an outer hinge portion at the second side having an inner cylindrical configuration configured to engage said inner hinge portion of an adjacent panel and cooperate to provide a hinge between adjacent panels. The rotatably interlinked panels can be formed of a metal or metal alloy comprising aluminum.
In another more detailed aspect the continuous belt defines an inner surface and first and second ends, said belt being slidably connected to said pivoting frame by at least one connection between said pivoting frame and said inner surface intermediate the first and second ends of the belt, and wherein said connection allows relative movement of the frame and continuous belt in a direction parallel to a plane defined by the climbing training wall surface and restricts movement in a direction orthogonal to said plane, whereby said continuous belt is restricted from movement orthogonal to said plane defined by the climbing wall surface by at least one sliding connection to the pivoting frame
Ascent Products, Inc.
Crow Stephen R.
Roth & Goldman
LandOfFree
System for climbing training does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System for climbing training, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for climbing training will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2556945