System for cell-based screening

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007210, C435S029000, C435S040500, C435S040510, C435S288300, C435S288400, C435S287800, C435S287900, C530S300000, C530S350000, C436S546000, C436S172000, C436S527000, C436S800000, C436S809000, C436S063000, C436S518000, C436S169000, C436S164000, C536S023100, C536S023400, C536S023500, C536S023530

Reexamination Certificate

active

06756207

ABSTRACT:

FIELD OF THE INVENTION
This invention is in the field of fluorescence-based cell and molecular biochemical assays for drug discovery.
BACKGROUND OF THE INVENTION
Drug discovery, as currently practiced in the art, is a long, multiple step process involving identification of specific disease targets, development of an assay based on a specific target, validation of the assay, optimization and automation of the assay to produce a screen, high throughput screening of compound libraries using the assay to identify “hits”, hit validation and hit compound optimization. The output of this process is a lead compound that goes into pre-clinical and, if validated, eventually into clinical trials. In this process, the screening phase is distinct from the assay development phases, and involves testing compound efficacy in living biological systems.
Historically, drug discovery is a slow and costly process, spanning numerous years and consuming hundreds of millions of dollars per drug created. Developments in the areas of genomics and high throughput screening have resulted in increased capacity and efficiency in the areas of target identification and volume of compounds screened. Significant advances in automated DNA sequencing, PCR application, positional cloning, hybridization arrays, and bioinformatics have greatly increased the number of genes (and gene fragments) encoding potential drug screening targets. However, the basic scheme for drug screening remians the same.
Validation of genomic targets as points for therapeutic intervention using the existing methods and protocols has become a bottleneck in the drug discovery process due to the slow, manual methods employed, such as in vivo functional models, functional analysis of recombinant proteins, and stable cell line expression of candidate genes. Primary DNA sequence data acquired through automated sequencing does not permit identification of gene function, but can provide information about common “motifs” and specific gene homology when compared to known sequence databases. Genomic methods such as subtraction hybridization and RADE (rapid amplification of differential expression) can be used to identify genes that are up or down regulated in a disease state model. However, identification and validation still proceed down the same pathway. Some proteomic methods use protein identification (global expression arrays, 2D electrophoresis, combinatorial libraries) in combination with reverse genetics to identify candidate genes of interest. Such putative “disease associated sequences” or DAS isolated as intact cDNA are a great advantage to these methods, but they are identified by the hundreds without providing any information regarding type, activity, and distribution of the encoded protein. Choosing a subset of DAS as drug screening targets is “random”, and thus extremely inefficient, without functional data to provide a mechanistic link with disease. It is necessary, therefore, to provide new technologies to rapidly screen DAS to establish biological function, thereby improving target validation and candidate optimization in drug discovery.
There are three major avenues for improving early drug discovery productivity. First, there is a need for tools that provide increased information handling capability. Bioinformatics has blossomed with the rapid development of DNA sequencing systems and the evolution of the genomics database. Genomics is beginning to play a critical role in the identification of potential new targets. Proteomics has become indispensible in relating structure and function of protein targets in order to predict drug interactions. However, the next level of biological complexity is the cell. Therefore, there is a need to acquire, manage and search multi-dimensional information from cells. Secondly, there is a need for higher throughput tools. Automation is a key to improving productivity as has already been demonstrated in DNA sequencing and high throughput primary screening. The instant invention provides for automated systems that extract multiple parameter information from cells that meet the need for higher throughput tools. The instant invention also provides for miniaturizing the methods, thereby allowing increased throughput, while decreasing the volumes of reagents and test compounds required in each assay.
Radioactivity has been the dominant read-out in early drug discovery assays. However, the need for more information, higher throughput and miniaturization has caused a shift towards using fluorescence detection. Fluorescence-based reagents can yield more powerful, multiple parameter assays that are higher in throughput and information content and require lower volumes of reagents and test compounds. Fluorescence is also safer and less expensive than radioactivity-based methods.
Screening of cells treated with dyes and fluorescent reagents is well known in the art. There is a considerable body of literature related to genetic engineering of cells to produce fluorescent proteins, such as modified green fluorescent protein (GFP), as a reporter molecule. Some properties of wild-type GFP are disclosed by Morise et al. (
Biochemistry
13 (1974), p. 2656-2662), and Ward et al. (
Photochem. Photobiol
. 31 (1980), p. 611-615). The GFP of the jellyfish
Aequorea victoria
has an excitation maximum at 395 nm and an emission maximum at 510 nm, and does not require an exogenous factor for fluorescence activity. Uses for GFP disclosed in the literature are widespread and include the study of gene expression and protein localization (Chalfie et al.,
Science
263 (1994), p. 12501-12504)), as a tool for visualizing subcellular organelles (Rizzuto et al.,
Curr. Biology
5 (1995), p. 635-642)), visualization of protein transport along the secretory pathway (Kaether and Gerdes,
FEBS Letters
369 (1995), p. 267-271)), expression in plant cells (Hu and Cheng,
FEBS Letters
369 (1995), p. 331-334)) and Drosophila embryos (Davis et al.,
Dev. Biology
170 (1995), p. 726-729)), and as a reporter molecule fused to another protein of interest (U.S. Pat. No. 5,491,084). Similarly, WO96/23898 relates to methods of detecting biologically active substances affecting intracellular processes by utilizing a GFP construct having a protein kinase activation site. This patent, and all other patents referenced in this application are incorporated by reference in their entirety Numerous references are related to GFP proteins in biological systems. For example, WO 96/09598 describes a system for isolating cells of interest utilizing the expression of a GFP like protein. WO 96/27675 describes the expression of GFP in plants. WO 95/21191 describes modified GFP protein expressed in transformed organisms to detect mutagenesis. U.S. Pat. Nos. 5,401,629 and 5,436,128 describe assays and compositions for detecting and evaluating the intracellular transduction of an extracellular signal using recombinant cells that express cell surface receptors and contain reporter gene constructs that include transcriptional regulatory elements that are responsive to the activity of cell surface receptors.
Performing a screen on many thousands of compounds requires parallel handling and processing of many compounds and assay component reagents. Standard high throughput screens (“HTS”) use mixtures of compounds and biological reagents along with some indicator compound loaded into arrays of wells in standard microtiter plates with 96 or 384 wells. The signal measured from each well, either fluorescence emission, optical density, or radioactivity, integrates the signal from all the material in the well giving an overall population average of all the molecules in the well.
Science Applications International Corporation (SAIC) 130 Fifth Avenue, Seattle, Wash. 98109) describes an imaging plate reader. This system uses a CCD camera to image the whole area of a 96 well plate. The image is analyzed to calculate the total fluorescence per well for all the material in the well.
Molecular Devices, Inc. (Sunnyvale, Calif.) describes a system (FLIPR) which uses low angle laser

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System for cell-based screening does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System for cell-based screening, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for cell-based screening will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3362471

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.