System for calibration of a digital-to-analog converter

Coded data generation or conversion – Converter calibration or testing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C341S143000

Reexamination Certificate

active

06191715

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to a self-calibrating digital-to-analog converter that requires a less limited range of its digital input signal to avoid distortion of its analog output than is the case for prior self-calibrating digital-to-analog converters. The invention also relates to such a self-calibrating digital-to-analog converter which does not skew its valid digital input range as a result of digital self-calibration to accomplish an offset correction, or as a result of switching from a self-calibrating mode to a normal operating mode.
U.S. Pat. No. 5,087,914 (Sooch et al) discloses the closest prior art presently known to the inventor. FIG. 1 of U.S. Pat. No. 5,087,914 shows a digital-to-analog conversion system in which a digital input 18 is converted to an analog output on conductor 34. The system includes a digital section 10 that performs two main functions, the first of which is to convert an 18-bit digital input word on bus 18 to a 1-bit digital data stream that appears on a single conductor 20. It accomplishes this mainly by an oversampling system that includes an interpolation filter and sample/hold circuitry in block 14, and applies that information in parallel form to the digital inputs of a delta-sigma modulator 16. Delta-sigma modulator 16 functions as a “quantizer” that converts the parallel digital data input to it into a 1-bit digital data stream containing essentially the same digital information.
The second function performed by digital section 10 of U.S. Pat. No. 5,087,914 is to perform a digital self-calibration to adjust for an analog “offset” voltage that, because of inaccuracies in the circuit components, would otherwise appear on analog output conductor 34 if all eighteen bits of the digital input on BUS 18 were set to logical “0”s. To accomplish the self-calibration, the system of U.S. Pat. No. 5,087,914 converts the analog offset voltage to a digital number which is stored in offset register 19 and then is added by means of adder 24 to the digital output produced by the interpolation filter and sample/hold circuitry 14. The addition of adder 24 is performed before or ahead of the delta-sigma modulator 16. The digital offset correction provides a more accurate parallel data input to delta-sigma modulator 16. Therefore, any digital input word applied to input conductors 18 will be converted to an accurate analog output voltage, with the offset error having been cancelled by offset register 26 and parallel adder 24.
Analog section 12 of U.S. Pat. No. 5,087,914 includes a 1-bit digital-to-analog converter 21 followed by an analog filter 22 and an output operational amplifier 28. During a self-calibration operation, operational amplifier 28 amplifies the output of analog filter 22 and feeds it back via a comparator 28 to a calibration control circuit 40 which computes an offset value by a successive approximation technique and loads it into offset register 26. Meanwhile, isolation operational amplifier 28 isolates the analog output 34 from the output of output operational amplifier 28 during the entire self-calibration procedure and also closes switch 44 to thereby clamp analog output 34 to ground.
A problem with performing the self-calibration ahead of the delta-sigma modulator as disclosed in U.S. Pat. No. 5,087,914 is that adding a digital offset correction number to the digital input word before it is applied as an input to the delta-sigma modulator skews the valid digital input signal range of the delta-sigma modulator by the amount of the digital offset correction. That can result in “clipping” of digital bits within the delta-sigma modulator at the end of the input signal range which is diminished by the amount of the digital offset correction. That makes it necessary to add one or more bits to the length of the digital input word if it is desired to avoid distortion of the analog output of the digital-to-analog converter that is caused by diminishing one end of the valid digital input range by the amount of the digital offset correction. Thus, the self-calibration technique described in U.S. Pat. No. 5,087,914 either diminishes the digital input range or requires addition of one or more bits to the length of the digital input word; the latter increases the complexity and amount of chip area required for an integrated circuit implementation of the digital-to-analog converter 1.
Another problem of the self-calibration scheme disclosed in U.S. Pat. No. 5,087,914 is that the analog output terminal is clamped to the ground reference voltage level by switch 44 during each self-calibration operation. That ground level may be an “invalid” level with respect to an external utilization system that receives the output signal of the digital-to-analog converter, and therefore may be very undesirable in the utilization system because it may necessitate disabling the entire utilization system during self-calibration of the digital-to-analog converter of the '914 patent. In any case, additional time then must be allowed for the utilization system to recover when the analog output on conductor 34 is unclamped after the self-calibration procedure is complete. Thus, there is a need for a self-calibrated digital-to-analog converter which does not limit the digital input range or clamp the output during the self-calibration operation.
Another problem with the self-calibration scheme disclosed in U.S. Pat. No. 5,087,914 is that since the feedback resistor 36 is clamped to ground during the self-calibration operation, it can not also be used to establish the gain of amplifier 28 during self-calibration. Therefore, the system disclosed in U.S. Pat. No. 5,087,914 would not be expected to provide self-calibration of the gain of the digital-to-analog converter.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the invention to provide a self-calibration circuit and method for a digital-to-analog converter which does not isolate the analog output terminal from an output operational amplifier during digital self-calibration.
It is another object of the invention to avoid a slow recovery time of an analog output during self-calibration of an digital-to-analog converter.
It is another object of the invention to avoid skewing of the valid digital input signal range of a delta-sigma modulator of a delta-sigma digital-to-analog converter digital input signal as a result of digital self-calibration to eliminate the effects of an offset error.
It is another object of the invention to provide a self-calibration system for a digital-to-analog converter to avoid loss of bits of resolution as a result of a digital self-calibration operation.
It is another object of the invention to avoid “clipping” and consequent distortion of the analog output of a digital-to-analog converter as a result of skewing of the valid range of the digital input signal of a delta-sigma modulator caused by digital self-calibration ahead of the delta-sigma modulator.
It is another object of the invention to provide a self-calibration system for a digital-to-analog converter which accommodates addition of dither and/or self-calibration of offset without causing distortion of the analog output of the digital-to-analog converter.
It is another object of the invention to provide a self-calibration system for a digital-to-analog converter which avoids distortion due to substantial load changes that occur during a self-calibration operation.
It is another object of the invention to provide a self-calibrated digital-to-analog converter which has minimum effect on the analog output signal during a self-calibration operation.
It is another object of the invention to provide a self-calibration system for a digital-to-analog converter which avoids the need for an analog output thereof to recover from being clamped to a reference voltage during a self-calibration procedure.
It is another object of the invention to provide a self-calibration system for a digital-to-analog converter which also accepts an external digital offset value and avoids skewing of the valid digital input signal

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System for calibration of a digital-to-analog converter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System for calibration of a digital-to-analog converter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for calibration of a digital-to-analog converter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2595102

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.