Fluid handling – Convertible
Reexamination Certificate
2002-05-15
2004-12-21
Lee, Kevin (Department: 3753)
Fluid handling
Convertible
C137S884000
Reexamination Certificate
active
06832622
ABSTRACT:
FIELD OF THE INVENTION
The invention relates generally to a system used in the field of automated processing of fluids. In particular, the invention relates to a system for the automated processing of fluids using combinable and interchangeable process modules.
BACKGROUND OF THE INVENTION
U.S. Pat. No. 5,083,364 discloses a system for producing semiconductor substrates, which consists of a plurality of aligned process modules. The process modules are supplied with data, energy and the required chemicals, gases and liquids via a shared media bus. The fluids are also discharged via the media bus. At least one of the process modules is configured for feeding the fluids into a fluid bus or discharging the fluids. The media bus has electric lines for data and energy transmission and also has various pipes for carrying the different fluids. At a grid spacing defined by the size of the process modules, terminal boxes with electrical connections and fluid connections are provided along the media bus to which the individual process modules can be connected by means of corresponding mating connections. The fluid connections are equipped with self-closing valves, which outwardly seal the corresponding fluid connection if it is not connected to a respective mating connection of a process module. Within the prior art system disclosed in U.S. Pat. No. 5,083,364, individual process modules can be comparatively easily added, removed or replaced as required.
The fluid bus of this prior art system is configured especially for the fluids required for the production of semiconductor substrates and for this purpose, the system is equipped with various pipes, which, in some cases, have different diameters and cross sections. The variability and applicability of this prior art system is therefore limited specifically to the production process of semiconductor substrates.
EP-A-0 303 565 discloses a system for producing a chemical product. Different production steps are carried out in respective fixed or mobile process modules, which each comprise a control unit and a chemical unit. The corresponding production step for each process module is carried out in the respective chemical unit and controlled by the control unit. The control units of the different process modules are connected to a process control system via data lines. The materials required or accumulated during production are supplied to or discharged from the individual chemical units within the process modules via supply and discharge lines. Thus, modularity and flexibility are essentially achieved on the control side, but not on the process side.
OBJECTS OF THE INVENTION
An object of the present invention is to provide a system for the automated processing of fluids and which provides improved modularity and corresponding flexibility.
SUMMARY OF THE INVENTION
In accordance with the invention, the above and other objects are attained by the provision of a system for automated processing of fluids, the system having combinable, interchangeable process modules. Each process module includes a control unit and a fluid unit that can be controlled by the control unit to execute a module-specific process function within the context of the processing of the fluids. The control units are interconnected via a data bus, which is shared by the process modules, and the fluid units are interconnected via a fluid bus which comprises a plurality of channels. The configuration of at least one portion of the channels of the fluid bus can be varied by using a configuration device in the area of the connections of the fluid bus with the fluid units. Processing of fluids should be understood, in particular, as the analysis or synthesis of fluids, including the required secondary functions. These fluids can be liquids, gases, or solids transported by using carrier fluids.
Due to the adjustability of the channel configuration in the connection areas of individual process modules with the fluid bus, extensive modularity and flexibility of the inventive system is ensured not only on the control side but also on the process side, since, in contrast to the prior art systems, the channels are not pre-assigned. For instance, depending on the configuration settings, fluid units of the same type of process modules can be connected with different channels of the fluid bus as required. Preferably, individual channel segments between adjacent process modules can be shut off using the configuration devices so that, for instance, a channel located on both sides of a particular process module can be occupied with different fluids. Furthermore, individual channels between different predefined process modules can be occupied with a fluid in segments depending on the respective channel configuration set in their area. Individual channels or channel segments can also be connected in parallel to obtain a larger flow cross section.
The configuration devices can each be designed as adapters, which connect the corresponding process module to the fluid bus. Depending on the particular adapter used, this results in different interconnections between the channels of the incoming and the outgoing fluid bus and the fluid inlets and outlets of the fluid unit in the respective process module.
The adapter preferably comprises an information interface to the connected process module for transmitting information on the configuration settings to the intra-module control unit. The control unit is configured to forward this information via the data bus to a higher-level control unit and/or to the control units in the other process modules, respectively. The channel configuration settings are then, for instance, displayed on a visualization device of the higher level control unit or are available as information for the other process modules, such that misassignments of the channels, e.g., the unintended introduction of two different fluids into one and the same channel or channel segment can be detected. The information on the channel configuration that is set by the corresponding adapter is available, for instance, in the form of coding, which can be read by the control unit in the associated process module.
According to an alternative embodiment of the inventive system, the fluid bus is formed by internal fluid bus segments within a succession of process modules. The configuration devices are embodied as configuration modules, which can be inserted between individual process modules in the row of process modules. Depending on the configuration module used, this results in different interconnections of the channels of adjacent process modules.
Preferably, the configuration modules each have a configuration signaling unit connected to the data bus, which is used to transmit information on the configuration settings via the data bus to a higher level control unit and/or to the control units in the process modules. Consequently, the channel configuration settings are displayed, for instance, on a visualization device of the higher level control unit or are available as information to the process modules, so that any misassignments of the channels can be detected.
Finally, the configuration devices can also each be a component of at least individual process modules and can be controlled by the intra-module control unit to set the corresponding channel configuration. This makes it possible, e.g., from a central location, automatically to configure the entire fluid bus via the data bus and the control units in the individual process modules.
The controllable configuration device preferably has controllable valves along the course of the channels of the fluid bus and along the course of channel branchings to the corresponding fluid unit. One-way valves or multi-way valves combining the functions of several one-way valves may be provided.
The control units are preferably each designed to signal the configuration settings of the channels via the data bus to a higher level control unit that is connected to the data bus and/or to the control units in the respective other process modules. The channel confi
Hassel Joerg
Steckenborn Arno
LandOfFree
System for automatic processing of fluids using combinable... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System for automatic processing of fluids using combinable..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for automatic processing of fluids using combinable... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3329523