Data processing: generic control systems or specific application – Specific application – apparatus or process – Product assembly or manufacturing
Reexamination Certificate
2003-06-11
2004-10-19
Picard, Leo (Department: 2125)
Data processing: generic control systems or specific application
Specific application, apparatus or process
Product assembly or manufacturing
C700S095000, C700S108000, C700S109000, C700S110000, C700S117000, C438S014000
Reexamination Certificate
active
06807455
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a substrate processing system and a substrate processing method for performing predetermined processing on substrates including a semiconductor substrate, a glass substrate for a liquid crystal display device, a glass substrate for a photomask, a substrate for an optical disc, and the like. More particularly, the invention relates to an improvement for making the processing states of respective substrates processed in parallel substantially the same, and an improvement for making the substrate processing environments of respective substrate processing apparatuses substantially the same.
2. Description of the Background Art
A substrate processing apparatus performs successive surface preparation processes including a chemical process, a cleaning process and the like using various liquid chemicals and pure water (collectively referred to as a “processing solution”). One of the processes known in the art is a polymer removal process after dry etching. For instance, the polymer removal process in a single-wafer type substrate processing apparatus for processing substrates one by one includes: (1) applying a liquid chemical to a substrate while spinning the substrate to modify a polymer residue which is part of a resist deposited on the bottom or side wall of a wiring pattern; and (2) applying pure water to the substrate while spinning the substrate to rinse off the modified polymer residue, thereby removing the polymer residue from the substrate. Since the single-wafer polymer removal process is performed on one substrate at a time, a plurality of processing units are conventionally used to perform the removal process in parallel in the light of improvements in throughput.
An approach to produce much more substrates is to purchase a new substrate processing apparatus to increase the number of substrate processing apparatuses. Purchase of a new substrate processing apparatus identical in hardware construction with an existing substrate processing apparatus having been in operation in a semiconductor factory allows the use of parameters (e.g., settings of a filter fan unit for forming a downflow in the substrate processing apparatus) of the existing apparatus as parameters required to set a substrate processing environment.
Even though the plurality of processing units are basically the same in construction, the specific constructions and functions of the units are not necessarily the same since the installation environments of the units are not completely the same. This might results in variations between processing results of the respective substrates. For example, when attention is focused on pipes for supplying a liquid chemical from a liquid chemical source to a plurality of processing units, the lengths of the pipes from the liquid chemical source to the plurality of processing units are not necessarily equal to each other. This might cause different values of liquid chemical discharge timing, liquid chemical discharge pressure, liquid chemical discharge amount, and the like if the same reference command value for discharge of the liquid chemical is sent to the plurality of processing units. This causes different processing conditions of the substrates in the respective processing units to result in variations between the processing results of the substrates even in the same lot.
The above-mentioned processing result variations also occur between substrate processing apparatuses. Specifically, even though the existing apparatus and the new apparatus are basically the same in construction, the specific constructions and functions of the substrate processing apparatuses are not necessarily the same since the installation environments of the substrate processing apparatuses are not completely the same. This might results in variations between processing results of the respective substrates. For example, when attention is focused on pipes for supplying a liquid chemical from a common liquid chemical source installed in the semiconductor factory to the existing apparatus and the new apparatus, the lengths of the pipes from the liquid chemical source to the plurality of substrate processing apparatuses are not necessarily equal to each other. This might cause different pressure values in the pipes of the liquid chemical from the liquid chemical source between the existing apparatus and the new apparatus. This causes different processing conditions of the substrates in the respective substrate processing apparatuses to result in the processing result variations.
The conventional solutions to the above-mentioned problems are as follows: To solve the problem of the processing result variations between the processing units, an operator of the substrate processing apparatus previously calculates correction amounts for the respective processing units by experiment or the like. Then, a control command value including a reference command value plus the correction amount is sent to each of the processing units to reduce the difference in processing state between the processing units, thereby suppressing the substrate processing result variations between the processing units.
To solve the problem of the processing result variations between the existing apparatus and the new apparatus, the operator previously calculates a correction amount which makes the substrate processing environments of the existing and new apparatuses substantially the same, based on parameters of the existing apparatus by experiment or the like, to make the substrate processing environments of the existing and new apparatuses substantially the same, thereby suppressing the substrate processing result variations.
However, because of the recent trends toward finer wiring patterns and more layers of wiring, substrate processing has been required to control the processing conditions more accurately than ever. In some types of the substrate processing, a change in substrate processing conditions such as a changeover might cause the difference in processing conditions between the processing units to be out of tolerance when the previously calculated correction amounts are used. Thus, the operator must calculate the correction amounts so as to reduce the difference between the processing units each time the substrate processing conditions are changed. This increases the time and labor for the operator to operate, resulting in the increase in manufacturing costs of semiconductor devices.
There is a need to accurately control not only the processing conditions of the processing units but also the processing conditions of the substrate processing apparatuses. Thus, the operator must calculate the correction amount which makes the substrate processing environments substantially the same more accurately. This increases the time and labor for the operator to operate, resulting in the increase in manufacturing costs of substrates.
The above-mentioned problems resulting from the difference in substrate processing conditions between the processing units and the difference in substrate processing environment between the substrate processing apparatuses are encountered not only in the polymer removal process but also in general substrate processing.
SUMMARY OF THE INVENTION
The present invention is intended for a substrate processing system.
According to the present invention, the substrate processing system comprises: a) a substrate processing apparatus having a plurality of processing units capable of processing substrates in parallel; and b) an information processor connected through a network to the substrate processing apparatus, the information processor including: b-1) a first sending part for transmitting a first reference value as a control command value for a substrate processing function to the plurality of processing units; b-2) a receiving part for receiving a plurality of measured values from the substrate processing apparatus, the plurality of measured values indicating respective substrate processing states in the plurality of processi
Hamada Tetsuya
Yoshida Takushi
Dainippon Screen Mfg. Co,. Ltd.
Kasenge Charles
Osterlenk, Faber, Gerb & Soffen, LLP
Picard Leo
LandOfFree
System for and method of processing substrate does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System for and method of processing substrate, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for and method of processing substrate will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3279835