System for adjusting a transmission ratio in a transmission...

Machine element or mechanism – Gearing – Interchangeably locked

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S051000, C477S034000

Reexamination Certificate

active

06497161

ABSTRACT:

BACKGROUND OF THE INVENTION
Adaptive transmission controls are, for example, known from U.S. Pat. No. 5,157,609 and German patent publication 4,136,613 as well as from the articles from “Automobiltechnische Zeitschrift” 94 (1992) 9, starting at page 428 and from “Automobiltechnische Zeitschrift” 95 (1993) 9, starting at page 420. In automatic transmissions, the transmission changes are, in general, determined in dependence upon the vehicle longitudinal speed and the engine load (throttle flap angle). This takes place by means of a characteristic field. In adaptive transmission control systems, the characteristic field can be adapted to the behavior of the driver (driver type), the traffic situation and/or the driving situation to which the vehicle is subjected. The transmission ratio changes are determined by means of the characteristic field. In setting the behavior of the driver, it is generally evaluated whether the driver adheres more to a driving-power orientated driving manner or more to a fuel optimized driving manner. In the evaluation of the traffic and driving situation, it can be distinguished, for example, whether the vehicle is in city traffic, ahead of or in a curve, on a hill or in overrun operation. Depending upon the evaluation of the above-mentioned points, the particular characteristic line which is suitable is selected from a number of different characteristic lines. Furthermore, a shifting of the base shifting characteristic field, as described in U.S. Pat. No. 5,857,161, can be provided.
Furthermore, it is conventional in vehicles having an automatic transmission (AT) to provide a driver with the possibility to manually shift. This is so because a control via a determination of type of driver and driving situation can be adapted to the driver and to the instantaneous conditions of the roadways, however, a “look-ahead” driving can only be provided by the driver. In many vehicles, a separate shifting path (M-path) is provided for the so-called touch operation. In automated manual transmissions (ASG), this manual mode or touch-shift operation is declared to be the main operating mode in order to make the conversion from manual transmission desirable to the end customer. The characterization “touch-shift operation” is based on the situation that mostly no direct gear command can be pregiven; instead, the driver can sequentially touch-shift up or touch-shift down one gear at a time starting from the gear in place.
With respect to the so-called “touch-shift operation”, there is a great variety of different desires of the vehicle manufacturer as to how the transmission control (GS) has to react to the touch-shift commands.
SUMMARY OF THE INVENTION
It is the object of the invention to provide a unified structure for controlling the transmission via touch-shift, commands which can be adapted as easily as possible to the different commands.
The invention proceeds from a system for adjusting a transmission ratio in a transmission built into a motor vehicle. Here, selection means are provided which are actuable by the driver of the vehicle and with which the driver can pregive pulses for changing the transmission ratios. In a first component object, the pulse processing, pulses are detected whereupon, in a second component object, the counter, numerical values are determined and stored in dependence upon valid pulses. In a third component object, the shift request, shift commands are determined in dependence upon numerical values and while considering pregivable peripheral conditions. The transmission ratio is adjusted in dependence upon the shift requests.
According to the invention, the pulse determination and their conversion into specific shift inputs for the transmission are realized fully independently of each other. These component objects communicate only indirectly via the component object “counter” with each other. In each of the three component objects, changes can be made independently of each other in accordance with changes specific to the customer. The pulse determination and the shift request can even be worked off in different time rasters in order to satisfy the particular time-dependent requests made on the signals. With the defined interfaces of the objects, an exchangeability thereof is made possible whereby especially a reusability of the software for different control versions is facilitated.
In an advantageous embodiment of the invention, it is provided that the selection means are so configured that the driver can either input an upshift or a downshift command.
In the first component object, the pulse processing, the pulses are advantageously so detected that a single pulse is detected per actuation of the selection means.
In the second component object, which can be configured as a counter, a count value is incremented or decremented in dependence upon a pulse detected by the first component object.
The third component object, the shift request, advantageously has a first part, the touch-shift shift inhibitor, by means of which a check is made as to whether a transmission gear, which is desired via actuation of the selector means, is permissible or impermissible. Here, it is provided that such transmission shift operations are prevented which would lead to an impermissibly high or an impermissibly low rpm of the vehicle engine.
Furthermore, the third component object, the shift request, can have a second part, the touch-shift lever, by means of which a pregivable time duration can be allowed to elapse in the case of a downshift operation commanded by actuation of the selection means until a downshift operation is initiated. Here, it is especially provided that the count value is read out of the second component object, the counter, during this time duration. If, within this time duration, a downshift operation is again wanted by the driver via the actuation of the selection means, then a double downshift can be initiated insofar as possible.
Furthermore, the third component object, the shift request, can exhibit a third part, the touch-shift characteristic line, by means of which it can be determined whether the instantaneously adjusted transmission gear is within a pregiven range. A shift operation is then triggered when the instantaneously adjusted transmission gear is outside of the range. By means of the touch-shift characteristic line, a downshift operation is triggered in dependence upon the actuation of a kickdown switch.


REFERENCES:
patent: 4899278 (1990-02-01), Yamamoto et al.
patent: 5157609 (1992-10-01), Stehle et al.
patent: 5351776 (1994-10-01), Keller et al.
patent: 5857161 (1999-01-01), Zeilinger et al.
patent: 4136613 (1993-05-01), None
patent: 0602685 (1994-06-01), None
“Die Adaptive Getriebesteuerung für die Automatikgetriebe der BMW Fahrzeuge mit Zwölfzylindermotor” by A. Welter et al, ATZ Automobiltechnische Zeitschrift 94 (1992) 9, pp. 428 to 436.
“Die Adaptive Getriebesteuerung für BMW-Automobile” by A. Welter et al, ATZ Automobiltechnische Zeitschrift 95 (1993) 9, pp. 420 to 434.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System for adjusting a transmission ratio in a transmission... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System for adjusting a transmission ratio in a transmission..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for adjusting a transmission ratio in a transmission... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2996406

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.