System for actively supporting the flow of body fluids

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S096010, C600S016000, C417S205000

Reexamination Certificate

active

06508787

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention concerns the field of medical engineering and relates in particular to those systems with which invasive microsurgery, invasive drug therapy, circulatory support, dilation of vascular systems, and the like, can be carried out.
In recent years, there have been enormous advances in the treatment of organs which carry fluids, particularly those of the circulatory system. The development of catheters and invasive surgery instruments makes it possible to avoid intricate operations which impose a physical burden on the patient, and to rapidly and effectively treat acute states such as sudden cardiac arrest in cases of cardiogenic shock. Common to all these methods is the fact that the microsurgery instrument used is advanced to the “insertion” site through pathways which carry body fluid. Naturally, during its insertion, it greatly obstructs the flow of the body fluid there through the vessel in question, or even completely suppresses this flow.
2. Description of Related Art
Regarding the use of dilation catheters, to which the present invention is applicable inter alia, this problem has long been recognized and has prompted a number of proposals. Common to most of these proposals is that a blood flow guide system is provided inside the catheter, wherein the system has a proximal inlet and a distal outlet for blood flowing through it. These permit a passive, relatively small blood stream upon balloon dilation, brought about by the pressure difference prevailing at the dilation site (so-called autoperfusion catheter). Although the period of use of such an autoperfusion catheter is prolonged by this measure, it is still very limited because the decrease in the delivery of blood to the distally situated tissue can very quickly lead to an inadequate supply, with irreversible consequences.
An improvement was hoped for from those systems in which, with the aid of a pump, blood is actively transported through a lumen of the catheter from another vessel, for example the femoral artery (so-called active hemoperfusion catheter). However, this again has the disadvantage that a further vessel has to be tapped and the blood has to be brought to the required pressure by means of an extracorporeal, mechanical high-pressure pump and then delivered to the dilation catheter. Such a device is disclosed in the European Patent Application bearing the publication number 277 367 A1.
A further proposal envisages blood being suctioned proximally in pulses with the aid of a flap valve and of a liquid column, which can be advanced and retreated and is moved with an extracorporeal plunger, and this blood being ejected distally at the system pressure through an opening, with possible backflow being prevented by a distal ball valve. This device is already susceptible to failure because of the flap valve, it is of a complicated construction, demands the continuous supply of fresh saline solution, because the force-transmitting saline solution is not sealed off from the blood flow guide system, and can only be used in those cases where the catheter can be introduced into the relevant vessel in the direction of flow. A further disadvantage is the noncontinuous blood transport through the area of the stenosis. Such a device is shown in the European Patent Application bearing the publication number 353 889 A1.
A further attempted solution concerns the field of heart catheters. Here, it has been proposed to support a patient's circulatory system with the aid of an intra-ventricularly expanding auxiliary pump for supporting the heart. In this pump, an outer chamber with a double wall structure can be pressurized in such a way that it expands within the ventricle, in so doing becomes rigid and adapts to the ventricle wall. An inner balloon is inflated in pulses, as a result of which the diastole and systole of the heart are alternately imitated.
However, it has never been possible to achieve clinical acceptance of such a device.
SUMMARY OF THE INVENTION
The present invention is based on the object of making available a device which can be applied in all those cases in which the use of a medical instrument is necessary whose insertion into the body obstructs the flow of a body fluid. In this connection, the device is to be constructed in such a way that the use of this instrument is nonetheless possible, or is made easier, or its possible duration of use is extended. Although the insertion in blood vessels is of course the primary concern here, because invasive microsurgery, circulatory support and the like are of great importance, the invention is not however restricted to this. It is also suitable for use in lymph, bile or, if desired, liquor, for example in invasive gallbladder operations in which the transport of the bile should not be interrupted.
According to the invention, the aforementioned object is achieved by the provision of a device for actively supporting the flow of body fluids.
The design and material of the artificial flow guide system, and its additional fittings, will depend on the envisaged application. For example, it is possible to employ the materials and dimensions used in conventional dilation catheters. Designs which are particularly suitable for special applications are described in detail below.
The artificial flow guide system has an operational area in which a pump is embedded in such a way that it can transport blood from at least one inlet opening situated in the guide system to at least one outlet opening situated in the guide system. The expression “embedded” is here intended to signify that between the pump and the wall of the operational area there is as little distance as possible, preferably no distance, i.e. that the pump bears against the wall with substantial or complete sealing. In this arrangement, in specific embodiments, the pump can be driven in such a way that the body fluid can be transported in both directions, so that the device can be introduced both in co-current and counter-current with the flow of fluid through the vessel.
The design of the inlet and outlet openings will in each case depend on the type of application. The design can range from small circular openings in the side wall (e.g. arranged proximally as inlet opening), a single opening at the distal end (e.g. as outlet for a dilation catheter) or, e.g., a plurality of openings on one or both sides, right through to net-like and grid-like structures in the wall of the flow guide system.
The delivery of fluid through the pump can likewise be variable. Thus, the fluid to be conveyed can enter the flow guide system on the suction side of the pump and leave on the delivery side (at the distal end of the guide system, or else already further proximally). Alternatively, it can enter and leave on the delivery side.
The flow guide system itself must have such great flexibility that both its advance and also, and in particular, its function are possible within an optionally relatively strongly curved flow section of the corresponding blood vessel or of other fluid-carrying vessels. In this connection, preferably, the flow guide system is particularly flexible at least in a distal segment. In one embodiment, the flow guide system has a more rigid proximal segment and a more flexible distal segment. The proximal segment can have the same diameter as the distal segment, although it can also have a greater inner width. If the pump is arranged in this proximal area, it is better supported by the more rigid casing. In the case of the greater diameter of the proximal section, it is possible to incorporate a larger pump (with an improved pumping capacity). This is particularly of advantage when a very flexible, relatively long distal catheter segment is provided, in order, for example, to dilate those vessels which supply blood to the heart. In this case, the catheter can be advanced through the relatively large vessels to a point close to the area to be treated; in the treatment position, the very flexible distal segment of the flow guide system

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System for actively supporting the flow of body fluids does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System for actively supporting the flow of body fluids, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for actively supporting the flow of body fluids will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3002472

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.