System, device and method for combining streaming video with...

Electrical computers and digital processing systems: multicomput – Computer-to-computer protocol implementing – Computer-to-computer data streaming

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S206000, C709S207000, C709S219000, C709S225000

Reexamination Certificate

active

06795863

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates generally to an e-mail system for simultaneously distributing a plurality of different video data streams across a network to a plurality of client recipient computers, wherein the video streams may be embedded into a web page that provides e-mail services, preferably over the Internet.
2. Discussion of Related Art
The Internet is a constantly evolving worldwide communication technology network. One of its limitations has been the ability to present quality audio/video presentations. Due to the limited ability of current technology to transfer data to the end user, the quality of audio and video presentation on the Internet has been considered poor.
In general, there are two modern approaches to “playing back” multimedia information located at a remote location, such as playing back a “video clip” on the Internet. Using the first approach, a client node downloads a file having the video information from a corresponding “website” or server node. The client node then plays back the information once the file has been completely transferred. Using the second approach, the server node “streams” the information to the client node so that the client may begin playback soon after the information starts to arrive at the client node.
“Streaming video” is an industry term that describes the manner through which video is sent across the Internet. Various client players can view this “streaming video” if the video stream is encoded in a manner consistent with the capabilities and requirements of the various client players' equipment. In practice, the video signal is digitized, compressed and then encoded just prior to being transmitted to the various client players.
Digitizing is an electronic process in which a continuously variable (analog) signal is changed, without altering its essential content, into a multi-level (digital) signal. The output of a digitizer has discretely defined levels or states.
Audio and video compression reduces the amount of digital data required to store and transmit videos. Content compression can be as simple as removing all extra space characters, inserting a single repeat character to indicate a string of repeated characters, and substituting smaller bit strings for frequently occurring characters. By reducing the amount of data, not only are storage requirements reduced, but the speed with which videos are transmitted is increased. When working with live video, pre-optimizing the lighting camera on the motion content of the video prior to compression reduces artifacts caused by the compression process. Video compression techniques enable the videos to be played on client workstations.
The standard compression technique used with videos delivered over high-speed networks is Motion Picture Experts Group (MPEG). MPEG-1 and MPEG-2 define integrated audio and video streams. That is, a video encoded by MPEG-1 and MPEG-2 uses a single bit stream for both the audio and the video components. Orderwire (OW) proprietary implementation specifies sub data rates of the SIF MPEG-1 format combined with low bit rate proprietary encoding schemes. Typically, MPEG-1 is encoded at 1.5 Mbps as a standard. Sub data rates for MPEG-1 below 500 Kbps are non-standard and are typically not supported by software decoders.
Encoding devices convert analog video to one of several digital compression formats. The encoder output is a file that may be permanently stored. Alternatively, the output can be distributed on a computer network and viewed in real time, captured by another system, or discarded. Digital video distribution supports pre-encoded video files. Digital video distribution also supports output from network streaming encoders that encapsulate MPEG video data within the User Datagram Protocol (UDP) transport protocol and transmit it in real time over a network.
Because there is no standard format for encoded video data on a computer network, the output of an encoder can be viewed or captured only by suitably equipped receiving decoder systems. Video players that can view live digital video feeds directly from a network are provided to the client's workstation. The video player on the client side then decodes the compressed video format before playing it on the workstation. For this reason, the client-side video players are also called video decoders.
Several common client-side video players are presently being used to view video streams. G2 Real Video provides low bit-rate streaming with average quality playback. Each stream will have a bit rate of less than 56 Kbps.
QuickTime 4.0 provides low bit rate streaming with good quality playback. Each channel will have 100 Kbps and 56 Kbps streams. The images are scalable to 320×240 at 10 fps.
WindowsMedia provides low bit rate streaming with good quality playback. Each channel will have 300 Kbps, 100 Kbps and 37 Kbps streams. The images are scalable to 320×240 at from 10 to 30 fps.
Q-SIF (Quarter Standard Image Format) MPEG-1 (Thin MPEG) provides low bit rate streaming with good quality playback. Each stream typically has a data rate of less than 300 Kbps. This type of streaming requires 167 Mbytes of storage for each hour based on data rates of 250 Kbits/s of 176×144 pixcels image sizes. The images are scalable to 320×240 image sizes at 24-30 fps.
SIF MPEG-1 provides very good image quality with typical bit rates of 500 Kbps through 1.5 Mbps for image sizes of 352×288 pixels. This type of streaming requires 675 Mbytes of storage for each hour based on 1.5 Mbits/s data rates. The images are scalable to 640×480 at 30 fps, and the rate is supported by software decoders.
Presently, for transmitting data among computers on the Internet, Internet Protocol (IP) is the network layer for the IP Protocol Suite, a standard of the Internet Engineering Task Force (IETF). It is a packet-switching protocol that uses “best effort” for routing individual packets among hosts with no previously established communication path.
When IP is the standard used for transporting data among computers on the Internet, each computer on the network has an IP address that identifies it. The IP address consists of four octets represented in dotted decimal notation, such as 172.16.18.100. Multicast IP addresses are provided ranging from 224-239 (i.e. 224.xxx.xxx.xxx-239.xxx.xxx.xxx) in the final octet. Whereas the first octet denotes a multicast internet address.
With respect to transmitting video streams from a source/sender to a receiver/viewer, various transmission schemes are commonly employed. These transmission schemes utilize unicast and/or multicast UDP streams. Unicast streams are those sent from a sender to a single receiver. Multicast streams are those sent from a sender to multiple, simultaneous receivers.
Video on Demand (VoD) is a unicast transmission between the sender and the receiver. During a unicast transmission, a “channel” is exclusively established between the two parties. This channel is interactive in the sense that the receiver has the ability to play, fast-forward, rewind, pause, stop or start the video at any time. This application can be compared to functions of viewing videotape. The receiver/customer can order the tape at any time and control its playback dynamically.
Near Video on Demand (NVoD) is a scheduled multicast event. This technology is similar to watching a “pay-per-view” movie. A customer/viewer can select from a list of available programs on the video server and watch it at a scheduled time. The viewer will join an existing multicast group and will have no interaction on the playback of the video except for viewing the video as it plays.
Live Video Broadcasting (LVB) is another multicast application. This is analogous to what we see in traditional television broadcasting today. Live television broadcasts are compressed in “real-time” and transmitted over a multicast network. Again, the viewer has no interactive involvement in the playback of the broadcast, although the viewer can select a video from a li

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System, device and method for combining streaming video with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System, device and method for combining streaming video with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System, device and method for combining streaming video with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3256558

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.