System and process for producing polycondensation polymer

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From phenol – phenol ether – or inorganic phenolate

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C528S198000

Reexamination Certificate

active

06265526

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a system for producing a polycondensation polymer. More particularly, the present invention is concerned with a system for producing a polycondensation polymer, comprising (A) an inert gas absorption device for causing a molten polycondensation prepolymer to absorb an inert gas to thereby obtain (&agr;) a molten prepolymer having the inert gas absorbed therein, (B) a polymerizer device for polymerizing the inert gas-absorbed molten prepolymer (&agr;) under a reduced pressure, and (C) a pipe for transferring the inert gas-absorbed molten prepolymer (&agr;) from absorption device (A) to polymerizer device (B), wherein absorption device (A) and polymerizer device (B) are arranged in this order and connected to each other through pipe (C). The present invention is also concerned with a method for producing a polycondensation polymer, which comprises: treating a molten polycondensation prepolymer with an inert gas in an inert gas absorption zone to cause the molten polycondensation prepolymer to absorb the inert gas, thereby obtaining an inert gas-absorbed molten prepolymer (&agr;); subsequently transferring the inert gas-absorbed molten prepolymer (&agr;) to a polymerization reaction zone; and subjecting the inert gas-absorbed molten prepolymer (&agr;) to polymerization in the polymerization reaction zone under a specific reduced pressure, to thereby polymerize the inert gas-absorbed molten prepolymer (&agr;) to a predetermined degree of polymerization. By the use of the system or the method of the present invention, it has become possible to produce a colorless, high quality polycondensation polymer at high polymerization rate even without using a large amount of an inert gas.
2. Prior Art
As methods for producing polycondensation polymers, such as polyesters, polyamides and polycarbonates, there are known an interfacial polycondensation process which uses a solvent and a melt polycondensation process which uses no solvent. In general, a process which uses a solvent has problems in that not only is a great deal of labor required to remove the solvent from the produced polymer, but also a small amount of the solvent remaining in the produced polymer adversely affects the properties of the polymer.
In the case of a melt polycondensation process, a polycondensation reaction involved in this process is an equilibrium reaction and, hence, a polycondensation polymer is generally produced while removing by-product(s) formed in the polycondensation reaction from the equilibrium polycondensation reaction system so as to displace the equilibrium to the product side. For example, water and ethylene glycol are removed from the reaction system in the production of polyethylene terephthalate, and water is removed from the reaction system in the production of hexamethylene adipamide (6,6 nylon). An efficient removal of the by-product(s) is important for efficiently producing a polycondensation polymer by the melt polycondensation process.
Various apparatuses and methods for producing polycondensation polymers by the melt polycondensation process have been known. For example, Examined Japanese Patent Application Publication No. 46-34083, Examined Japanese Patent Application Publication No. 50-19600 (corresponding to GB-1007302) and Examined Japanese Patent Application Publication No. 3-14052 disclose a horizontal agitation type polymerizer vessel equipped with a revolving shaft. In each of the above-mentioned publications, the horizontal agitation type polymerizer vessel equipped with a revolving shaft is used to renew the surface of the polymer by rotary agitation so as to promote the separation of the by-product(s) of the polycondensation reaction from the reaction system. However, this technique has the following problem. Generally, in order to remove the by-product(s) of the polycondensation reaction from the reaction system, the polycondensation reaction is conducted under a high vacuum. However, a polymerizer having a revolving shaft, in which the gap between the casing of the polymerizer and the revolving shaft is sealed, for example the horizontal agitation type polymerizer vessel mentioned above, has a problem in that air leakage is likely to occur at the sealed portion of the polymerizer. In addition, the quality of the produced polymer is lowered by the shear heat generated by the revolution of the revolving shaft.
Further, as polymerizers used for producing a polycondensation polymer, polymerizers which do not use a revolving shaft and, instead, allow a prepolymer to fall freely therein so as to effect the polymerization of the prepolymer during the free fall thereof have also been known. For example, Examined Japanese Patent Application Publication No. 48-8355 describes a polymerizer comprising a polymerizer casing containing therein a porous body extending in the substantially vertical direction, wherein the porosity of the porous body increases as from an upper end of the porous body toward a lower end of the porous body; a distribution device for the feedstock mixture fed into the polymerizer casing, which is disposed in the polymerizer casing at an upper portion thereof; an exhaustion means for removing gas generated during the reaction in the polymerizer casing, which is provided in association with the polymerizer casing; and a withdrawal means for the produced polymer, which is provided at a lower portion of the polymerizer casing. Unexamined Japanese Patent Application Laid-Open Specification No. 53-17569 describes an apparatus comprising a hollow body containing: a number of linear guides extending in the vertical direction; a nozzle for feeding a highly viscous prepolymer, which is provided above the linear guides; and a withdrawal means for the produced polymer, which is provided below the linear guides. Further, Examined Japanese Patent Application Publication No. 4-14127 discloses a continuous polycondensation method in which a prepolymer having an intrinsic viscosity of at least 0.1 is extruded through a slit orifice into a heated reactor vessel, and the resultant film of the prepolymer is held between two wires extending downwardly from the slit orifice and allowed to move contenuously in a downward direction. In the above-mentioned patent documents, it is attempted to remove efficiently the by-product(s) of the polycondensation reaction from the reaction system by increasing the surface area of the prepolymer during the fall thereof in the apparatus (i.e., by improving the surface renewal of the prepolymer during the polymerization). However, by the techniques disclosed in the above-mentioned patent documents, the surface renewal of the prepolymer is not always satisfactory and the polymerization rate is disadvantageously low.
Unexamined Japanese Patent Application Laid-Open Specification No. 63-104601 describes a method for removing volatile substances from a liquid by using an apparatus having disposed therein a belt conveyer, wherein a belt (carrier means) of the belt conveyer is moved at a predetermined speed, and a liquid to be treated is fed onto the belt at an upstream end portion of the belt conveyer, wherein the liquid forms a thin film on the belt and the volatile substances are removed by evaporation from the thin film of the liquid during the movement thereof on the belt conveyer. When this method is employed for the polycondensation reaction, the surface renewal of a prepolymer is improved as compared to that in the case of the above-mentioned apparatuses in which the polymerization of a prepolymer is effected during the fall of the prepolymer. However, since the belt conveyer in the above-mentioned apparatus needs to be driven by an outside power source, the apparatus necessarily has a sealed portion at which the gap between the casing of the apparatus and a means for transmitting the power provided by the outside power source to the belt conveyer is sealed. Therefore, as in the case of the horizontal agitation type polymerizer vessel mentioned above, this apparatus,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and process for producing polycondensation polymer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and process for producing polycondensation polymer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and process for producing polycondensation polymer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2550547

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.