Electrical computers: arithmetic processing and calculating – Electrical digital calculating computer – Particular function performed
Reexamination Certificate
2003-06-10
2009-02-24
Mai, Tan V (Department: 2193)
Electrical computers: arithmetic processing and calculating
Electrical digital calculating computer
Particular function performed
Reexamination Certificate
active
07496619
ABSTRACT:
A system and methods for converting data for an object of interest, which is characterized by a function ƒ, between a digital form and an analog form. In one embodiment, the method includes the steps of locally selecting a plurality of data sample points in the order of N, N being an integer, wherein the data sample points are in a first form of data type, performing a transformation in a shift invariant space to the locally selected data sample points to obtain a new data set that is in a second form of data type different from the first form of data type, and reconstructing the object of interest ƒ from the new data set. In one embodiment, the first form of data type is one of the the digital form and the analog form, and the second form of data type is one of the digital form and the analog form that is different from the first form of data type. In other words, the first form of data type can be in digital form, and the corresponding second form of data type is in analog form, and vice versa.
REFERENCES:
patent: 6052427 (2000-04-01), Pan
patent: 6188964 (2001-02-01), Reister et al.
patent: 6477553 (2002-11-01), Druck
patent: 7076091 (2006-07-01), Rosenfeld
A. Aldroubi,Non-Uniform Weighted Average Sampling and Exact Reconstruction in Shift-Invariant Spaces, preprint, 2001.
A. Aldroubi,Portaits of frames, Proc. Amer. Math. Soc., 123 (1995), pp. 1661-1668.
A. Aldroubi and H. Feightinger.Exact iterative reconstruction algorithm for multivariate irregularly sampled functions in spine-like spaces: The L˜ theory, Proc. Amer. Math. Soc., 126 (1998), pp. 2677-2686.
A. Aldroubi and K. Gröchenig, Beurling-Landau-type theorems for non-uniform sampling in shift-invariant spaces, J. Fourier Anal. Appl., 6 (2001), pp. 91-101.
A. Aldroubi. Q. Sun and W.S. Tang,Non-uniform average sampling and reconstruction in multiply generated shift-invariant spaces, J. Fourier Anal. Appl., 7 (2001), pp. 1-19.
A. Aldroubi and M. Unser,Families of multiresolution and wavelet spaces with optimal properties, Numer. Funct. Anal. Optim., 14 (1993), pp. 417-446.
A. Aldroubi and M. Unser,Sampling procedure in function spaces and asymptotic equivalence with Shannon's sampling theory, Numer. Funct. Anal. Optim., 15 (1994), pp. 1-21.
A. Aldroubi. M. Unser and M. Eden,Cardinal spline filters: Stability and convergence to the ideal sinc interpolator, Signal Processing, 28 (1992), pp. 127-138.
A. Aldroubi and K. Grochenig,Beurling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces, J. Fourier Anal. Appl. 6(2000), pp. 93-103.
R. Balan,Equivalence relations and distances between Hilbert frames, Proc. Amer. Math. Soc., 127 (1999), pp. 2353-2366.
E. Bellers and G. De Haan,New algorithms for motion estimation on interlaced video, in Proc. SPIE-Visual Communication and Image Processing, 3309 (1998), pp. 111-121.
J.J. Benedetto and P.J.S.G. Ferrerira,Modern Sampling Theory, Birkhäuster, Boston, 2000, pp. 1-28.
J.J. Benedetto, C. Heil. and D.F. Walnut,Gabor systems and the Balian-Law theorem, in Gabor Analysis and Algorithms, H.G Feichtinger and T. Strohmer, eds., Birkhäuser, Boston, 1998, pp. 85-122.
J.J. Benedetto and S. Li,The theory of multiresolution frames and applications to filter banks, Appl. Comput. Harmon. Anal., 5 (1998), pp. 389-427.
J.J. Benedetto and H.-C. Wu,Non-uniform sampling and spiral MRI reconstruction, in Proc. SPIE—Wavelet Applications in Signal and Image Processing VIII, 4119 (2000), pp. 130-141.
A. Beurling and P. Malliavin,On the closure of characters and the zeros of entire functions, Acta Math., 118 (1967), pp. 79-93.
T. Blu and M. Unser,Quantitative Fourier analysis of approximation techniques: Part 1—interpolators and projectors, IEEE Trans. Signal Process., 47 (1999), pp. 2783-2795.
M.D. Buhmann,Radial basis functions, Acta numerica, (2000) Cambridge Univ. Press, Cambridge, pp. 1-38.
P.G. Casazza and O. Christensen,Frames containing a Riesx basis and preservation of this property under pertubations, SIAM J. Math. Anal., 29 (1998), pp. 266-278.
P. Casazza, D. Han and D. Larson,Frames for Banach spaces, In the Functional and Harmonic Analysis of Wavelets and Frames, Contemp. Math. 247, AMS, Providence, RI, 1999, pp. 149-182.
W. Chen, S. Itoh and J. Shiki,Irregular sampling theorems for wavelet subspaces, IEEE Trans. Inform. Theory, 44 (1998), pp. 1131-1142.
O. Christensen,Moment problems for frames and applications to irregular sampling and Gabor frames, Appl. Comput. Harmon. Anal., 3 (1996), pp. 82-86.
P. Craven and Grace Wahba,Smoothing noisy data with spline functions. Estimating the correct degree of smoothing by the method of generalized cross-validation, Numer. Math. 31, (1978/79), pp. 377-403.
C. De Boor, R. DeVore and A. Ron,The structure of finitely generated shift-invariant spaces L2(Rd), J. Funct. Anal., 119 (1994), pp. 37-78.
C. De Boor, R. DeVore,Partition of unity and approximation, Proc. Amer. Math. Soc., 93 (1985), pp. 705-709.
R.A. DeVore, B. Jawerth and B.J. Lucier,Image compression through wavelet transform coding, IEEE Trans. Inform. Theory, 38 (1992), pp. 719-746.
S. Demko, W.F. Moss and P.W. Smith,Decay rates for inverses of band matrices, Math. Comp. 43 (1984), pp. 491-499.
I. Djokovic and P.P. Vaidyanathan,Generalized sampling theorems in multiresolution subspaces, IEEE Trans. Signal Process., 45 (1997), pp. 583-599.
Y. Domar,Harmonic analysis based on certain commutative Banach algebras, Acta Math., 96 (1956), pp. 1-66.
C.C. Donovan, J.S. Geronimo and D.P. Hardin,Intertwining multiresolution analyses and the construction of piecewise-polynomial wavelets, SIAM J. Math. Anal., 27 (1996), pp. 1791-1815.
R.J. Duffin and A.C. Schaeffer,A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), pp. 341-366.
H.G. Feichtinger,Banach convolution algebras of Wiener type, in Functions, Series, Operators, vols. I, II (Budapest, 1980), North-Holland, Amsterdam, 1983, pp. 509-524.
H.G. Feichtinger,Generalized amalgams, with applications to Fourier transform, Canad. J. Math., 42 (1990), pp. 395-409.
H.G. Feichtinger,New results on regular and irregular sampling based on Wiener amalgams, in Proc. Conf. Function Spaces, K. Jarosz, ed., Lecture Notes in Math. 136, Springer-Verlag, New York, 1991, pp. 107-121.
H.G. Feichtinger,Wiener amalgams over Euclidean spaces and some of their applications, in Proc. Conf. Function Spaces. K. Jarosz, ed., Lecture Notes in Math. 136, Springer-Verlag, New York, 1991, pp. 123-137.
H.G. Feichtinger and K. Gröchenig,Banach spaces related to integrable group representations and their atomic decompostions, I, J. Funct. Anal., 86 (1989), pp. 307-340.
H.G. Frichtinger and K. Gröchenig,Iterative reconstruction of multivariate band-limited functions from irregular sampling values, Siam J. Math. Anal., 23 (1992), pp. 244-261.
H.G. Feichtinger and K. Gröchenig,Theory and practice of irregular sampling, in Wavelets-Mathematics and Applications. J.J. Benedetto and W. Frazier, eds., CRC, Boca Raton, FL, 1993, pp. 305-363.
H.G. Feichtinger and K. Gröchenig, and T. Strohmer,Efficient numerical methods in non-uniform sampling theory, Numer. Math., 69(1995), pp. 423-440.
S.S. Goh and I.G.H. Ong,Reconstruction of bandlimited signals from irregular samples, Signal Process., 46(1995), pp. 315-329.
T.N.T. Goodman, S.L. Lee and W.S. Tang,Wavelet wandering subspaces, Trans. Amer. Math. Soc., 338 (1993), pp. 639-654.
K. Gröchenig,Reconstruction algorithms in irregular sampling, Math. Comp., 59 (1992), pp. 181-194.
K. Gröchenig,Acceleration of the frame algorithm, IEEE Trans. Signal Process., Special Issue on Wavelets and Signal Processing, 41 (1993), pp. 3331-3340.
K. Gröchenig and H. Razafinjatovo,On Landau's necessary density conditions for sampling and interpolation of band-limited functions, J. London Math. Soc., 54 (1996), pp. 557-565.
K. Gröchenig and T. Strohmer,Numerical and theoretical aspects of non-uniform sampling of band-limited images, in Theory and Practice of Nonuniform Sampling, F. Marvasti, ed., Kluwer/Plenum, New York. 2001, in p
Aldroubi Akram
Feichtinger Hans G.
Gröchenig Karlheinz
Mai Tan V
Morris Manning & Martin LLP
Tingkang Xia, Esq. Tim
Vanderbilt University
LandOfFree
System and methods of nonuniform data sampling and data... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and methods of nonuniform data sampling and data..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and methods of nonuniform data sampling and data... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4103453