Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Implantable prosthesis – Bone
Reexamination Certificate
2001-09-06
2004-11-30
Shaver, Kevin (Department: 3732)
Prosthesis (i.e., artificial body members), parts thereof, or ai
Implantable prosthesis
Bone
Reexamination Certificate
active
06824565
ABSTRACT:
FIELD OF INVENTION
The present invention generally relates to a vertebral spacer to be inserted into an intervertebral space, thereby supporting the spinal column of a patient. The present invention further relates to a system and methods for implanting the vertebral spacer into the spinal column and securing the spacer therein.
BACKGROUND OF THE INVENTION
The spinal column, which is the central support to the vertebrate skeleton and a protective enclosure for the spinal cord, is a linear series of vertebral bones. Intervertebral discs separate and reduce friction between adjacent vertebrae and absorb compression forces applied to the spinal column. Spinal nerves that extend from each side of the spinal cord exit the column at intervertebral forama.
A typical vertebra comprises an anterior body, and a posterior arch that surrounds the spinal cord lying within the vertebral foramen formed by the arch. The muscles that flex the spine are attached to three processes extending from the posterior arch. On the upper surface of each vertebra in a standing human, are two superior articulated processes that oppose two inferior articulated processes extending from the lower surface of an adjacent vertebra. Facets on the opposing processes determine the range and direction of movement between adjacent vertebrae, hence the flexibility of the spinal column.
The intervertebral discs include the fibrillar cartilage of the anulus fibrosus, a fibrous ring, the center of which is filled with an elastic fibrogelatinous pulp that acts as a shock absorber. The outer third of the anulus fibrosus is innervated. The entire spinal column is united and strengthened by encapsulating ligaments.
Back pain is one of the most significant problems facing the workforce in the United States today. It is a leading cause of sickness-related absenteeism and is the main cause of disability for people aged between 19 and 45. Published reports suggest that the economic cost is significant, treatment alone exceeding $80 billion annually. Although acute back pain is common and typically treated with analgesics, chronic pain may demand surgery for effective treatment.
Back pain can occur from pinching or irritation of spinal nerves, compression of the spine, vertebral shifting relative to the spinal cord axis, and bone spur formation. The most common cause of disabling back pain, however, stems from trauma to a intervertebral disc, resulting from mechanical shock, stress, tumors or degenerative disease, which may impair functioning of the disc and limit spinal mobility. In many cases, the disc is permanently damaged and the preferred treatment becomes partial or total excision.
Another cause of back injury is herniation of the intervertebral disc, wherein the gelatinous fluid of the nucleus pulposus enters the vertebral canal and pressures the spinal cord. Again, surgery is often the only method available for permanent relief from pain or the neurological damage ensuing from the pressure of fluid on the spinal cord, and requires replacement of the damaged disc.
Traumatic injury to an intervertebral disc that is not removed will frequently promote scar tissue formation. Scar tissue is weaker than original healthy tissue so that the disc will progressively degenerate, lose water content, stiffen and become less effective as a shock absorber. Eventually, the disc may deform, herniate, or collapse, limiting flexibility of the spinal column at that position. The only option is for the intervertebral disc to be partially or totally removed.
When the disc is partially or completely removed, it is necessary to replace the excised material to prevent direct contact between hard bony surfaces of adjacent vertebrae. One vertebral spacer that may be inserted between adjacent vertebrae, according to U.S. Pat. No. 5,989,291 to Ralph et al., includes two opposing plates separated by a belleville washer or a modified belleville washer. The washer functions to provide a restorative force to mimic the natural functions of the disc of providing a shock absorber and mobility between adjacent vertebrae. However, mechanical devices intended to replicate intervertebral disc function have had only limited success. An alternative approach is a “cage” that maintains the space usually occupied by the disc to prevent the vertebrae from collapsing and impinging the nerve roots.
Spinal fusion may be used to restrict motion occurring between two vertebrae due to spinal segmental instability. Fusing the vertebrae together, however, reduces the mechanical back pain by preventing the now immobile vertebrae from impinging on the spinal nerve. The disadvantage of such spacers is that stability is created at the expense of spinal flexibility.
Surgical procedures for replacing intervertebral disc material, rather than the fusing of the vertebrae, have included anterior approaches and posterior approaches to the spinal column. The posterior approach (from the back of the patient) encounters the spinous process, superior articular process, and the inferior articular process that must be removed before insertion of the disc replacement material into the intervertebral space. Excessive removal of the bony process triggers further degradation and impediment of the normal movement of the spine. The anterior approach to the spinal column is complicated by the internal organs that must be bypassed or circumvented to access the vertebrae.
Many intervertebral spacers require preparation of the surfaces of the adjacent vertebrae to accommodate the spacer, causing significant tissue and bone trauma. For example, chiseling or drilling of the vertebral surface may be required to prepare a receiving slot. They may also require screwing the spacer into the intervertebral space, making installation difficult and increasing trauma to the vertebral tissue. Many spacers include complex geometries and are costly to manufacture. Examples of such geometrically complex spacers are described in U.S. Pat. No. 5,609,636 to Kohrs et al., U.S. Pat. No. 5,780,919 to Zdeblick et al., U.S. Pat. No. 5,865,848 to Baker and U.S. Pat. No. 5,776,196 to Matsuzaki et al. Many of these complex spacers may require screwing the spacer into the intervertebral space, thereby making installation difficult and traumatic to the vertebral tissue.
SUMMARY OF THE INVENTION
There is a need for a vertebral spacer having a simple geometry that is easily insertable into an intervertebral space while causing minimal trauma to the surface of the vertebrae as well as the bony processes thereof. The present invention provides a vertebral spacer having a simple geometry for supporting adjacent vertebrae after excision, at least partially or wholly, of an intervertebral disc. The spacer includes a body having a lower surface and an upper surface. The lower surface will be supported by a lower vertebra; the upper surface supports the adjacent upper vertebra. The body of the vertebral spacer of the present invention, therefore, provides support between the two adjacent vertebrae and to the spinal column.
The body of the vertebral spacer of the present invention additionally has an anterior face and a posterior face extending from the lower surface. The height of the anterior face of the body may be less than, or greater than, the height of the posterior face to maintain the curvature of the spine when the vertebral spacer is inserted between two vertebrae. The body of the vertebral spacer also includes at least one guiding groove suitable for engaging with an insertion tool for delivering the vertebral spacer to an intervertebral space.
The present invention further provides a system for delivering a vertebral spacer to the spinal column of a patient, comprising an insertion tool with a channel; (b) an optional guiding tool for directing the insertion tool to a selected point of insertion of a vertebral spacer; (c) a pusher; (d) a vertebral spacer slideably disposed in the channel of the insertion tool; and (e) a cutting tool. The cutting tool can be slid into the channel of the insertion tool providing that the pus
Muhanna Nabil L.
Schalliol David L.
Priddy Michael B.
Shaver Kevin
Womble Carlyle Sandridge & Rice PLLC
LandOfFree
System and methods for inserting a vertebral spacer does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and methods for inserting a vertebral spacer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and methods for inserting a vertebral spacer will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3340429