System and methods for electrosurgical restenosis of body...

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S028000

Reexamination Certificate

active

06179824

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates generally to apparatus and methods for maintaining patency in body passages and more particularly to a catheter system capable of selectively ablating occlusive media within a body lumen. The present invention is particularly useful for the electrosurgical cutting or ablation of invasive tissue growth in and around a stent anchored in the body lumen to help reduce or eliminate restenosis of the body lumen.
When a patient is suffering from atherosclerosis, significant occlusions or blockages are formed on the interior wall of the artery. As a result of these occlusions, the organ or extremity to which blood is to be supplied is compromised and the patient may experience a myocardial infarction or stroke. In less severe cases, it is often sufficient to treat the symptoms with pharmaceuticals and lifestyle modification to lessen the underlying causes of the disease. In more severe cases, a coronary artery blockage can often be treated using endovascular techniques such as balloon angioplasty, atherectomy, laser or hot tip ablation, placement of stents, and the like.
Percutaneous transluminal balloon angioplasty (PTBA) has become a recognized method of reducing the occlusion of blood vessels. The procedure involves routing a catheter having an inflatable balloon at the distal end thereof through the vascular system until the balloon is positioned at the site of the stenotic lesion to be treated. The balloon is then inflated to compress the atherosclerotic plaque into the wall of the blood vessel, thus increasing the size of the opening and enhancing blood flow through the affected artery. However, this successful procedure is overshadowed by the occurrence of restenosis, a re-narrowing of the artery. Studies have shown that 30-40 percent of angioplasty patients experience restenosis within 3-6 months of the angioplasty procedure. When restenosis occurs, patients may be treated with cardiovascular medications, additional angioplasty procedures or bypass surgery.
Restenosis often occurs because the wall of the dilated artery tends to spring back to its original shape following deflation of the dilation balloon. Arterial stenting has been introduced as a solution to the recoil of the vessel wall. Arterial stenting involves the placement of an expandable coil spring or wire-mesh tube within the occluded artery to reopen the lumen of the blood vessel. One example of an arterial stent is disclosed in U.S. Pat. No. 4,739,792 to Julio Palmaz. The Palmaz device comprises an expandable wire-mesh graft or prosthesis which is mounted upon an inflatable balloon catheter. The catheter assembly, including the graft, is delivered to the occluded area and is then inflated to radially force the graft into contact with the occlusion. As the graft expands, the lumen of the blood vessel is opened and blood flow is restored. After complete expansion of the graft, the balloon catheter is deflated and removed, leaving behind the graft to buttress and prevent elastic recoil of the blood vessel wall.
Although this method is successful in preventing recoil of the vessel wall, restenosis will often still occur. Smooth muscle cells which form the vessel wall tend to proliferate and build-up in the newly stented area of the blood vessel. This cellular build-up may eventually become large enough to block the lumen of the blood vessel.
It has recently been determined that localized heating of the blood vessel wall may inhibit the proliferation of smooth muscle cells which are believed to cause restenosis. One example of localized blood vessel heating is disclosed in U.S. Pat. No. 4,799,479 to Spears. The Spears patent discloses an apparatus for angioplasty having an inflatable balloon catheter which is provided with a meshwork of electrical wires to supply heat to a vessel wall. Following balloon angioplasty, the external surface of the balloon is heated to fuse together disrupted tissue elements and to kill smooth muscle cells which are believed to lead to restenosis. Unfortunately, the Spears device does not adequately prevent the spontaneous elastic recoil of the arterial wall. Immediately following angioplasty, the arterial wall begins to spring back to its original shape.
Thus stenting in and of itself is ineffective in preventing restenosis due to the occurrence of cellular proliferation. Likewise, balloon dilation in combination with localized heating does not adequately prevent restenosis since the vessel wall tends to spontaneously return to its original occluded shape.
Other techniques have recently been developed to help reduce incidences of restenosis. For example, procedures for irradiating the angioplasty site with UV light to reduce the proliferation of smooth muscle cells at the site have been disclosed. In addition, techniques have been disclosed for the controlled application of thermal and/or electrical energy directly to the stent by, for example, including resistive or inductive heating elements that may include radiofrequency electrodes within the stent. The radiofrequency energy is then applied to the stent to disrupt the cellular growth in or around the stent. One major disadvantage of these procedures is that it is difficult to selectively apply the energy to the invasive tissue without causing thermal damage to the body lumen wall. In particular, methods that apply energy, such as RF energy, directly to the stent will often cause thermal damage to the surrounding body lumen in which the stent is anchored.
SUMMARY OF THE INVENTION
The present invention comprises apparatus and methods for maintaining patency in body passages subject to occlusion by invasive tissue growth. The apparatus and methods of the present invention may be used to open and maintain patency in virtually any hollow body passage which may be subject to occlusion by invasive cellular growth or invasive solid tumor growth. Suitable hollow body passages include ducts, orifices, lumens, and the like, with exemplary body passages including the coronary arteries. The present invention is particularly useful for reducing or eliminating the effects of restenosis in coronary arteries by selectively removing tissue ingrowth in or around stents anchored therein.
The principles of the present invention are generally applicable to any body lumen which becomes partially or totally occluded. The present invention is particularly useful in a lumen containing a lumenal prosthesis, such as a stent, stent-graft or graft, which may be metallic, nonmetallic or a non-metallic coated metallic structure.
Restenosis often occurs when arthermateous media or thrombus moves or grows through or around the cylindrical wall of the prosthesis to partially occlude the body passage. Methods of the present invention comprise advancing an electrosurgical catheter within the body passage such that an electrode terminal is positioned near the occlusive media. High frequency voltage is applied to one or more electrode terminal(s) at the distal end of the catheter such that an electrical current flows from the electrode terminal(s), through the region of the occlusive media and to the return electrode to selectively remove the occlusive media without directly applying thermal or electrical energy to the prothesis or the lumenal wall. The electrode terminal is then advanced through the vacancy left by the removed occlusive media to recanalize the vessel. By selectively removing the occlusive media without passing energy directly to the stent, thermal damage to the surrounding lumenal wall is minimized.
A particular advantage of the present invention is the confinement of current flow paths between the return electrode and one or more electrode terminals to the vicinity of tissue ablating region. This confinement of current flow paths minimizes the undesired flow of current through portions or all of the stent, which may otherwise induce non-specific tissue injury beyond the site of recanalization of the occluded lumen. In one configuration, the return electrode is a movable guid

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and methods for electrosurgical restenosis of body... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and methods for electrosurgical restenosis of body..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and methods for electrosurgical restenosis of body... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2504177

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.