Photocopying – Projection printing and copying cameras – Methods
Reexamination Certificate
2003-05-29
2004-08-24
Nguyen, Henry Hung (Department: 2851)
Photocopying
Projection printing and copying cameras
Methods
C355S053000
Reexamination Certificate
active
06781674
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is related to dual substrate stage double exposure lithography systems.
2. Background Art
Lithography is a process used to create features on the surface of substrates. Such substrates can include those used in the manufacture of flat panel displays, circuit boards, various integrated circuits, and the like. A frequently used substrate for such applications is a semiconductor wafer. While this description is written in terms of a semiconductor wafer for illustrative purposes, one skilled in the art would recognize that this description also applies to other types of substrates known to those skilled in the art. During lithography, a wafer, which is disposed on a wafer stage, is exposed to an image projected onto the surface of the wafer by exposure optics located within a lithography apparatus. While exposure optics are used in the case of photolithography, a different type of exposure apparatus can be used depending on the particular application. For example, x-ray, ion, electron, or photon lithographies each can require a different exposure apparatus, as is known to those skilled in the art. The particular example of photolithography is discussed here for illustrative purposes only.
The projected image produces changes in the characteristics of a layer, for example photoresist, deposited on the surface of the wafer. These changes correspond to the features projected onto the wafer during exposure. Subsequent to exposure, the layer can be etched to produce a patterned layer. The pattern corresponds to those features projected onto the wafer during exposure. This patterned layer is then used to remove or further process exposed portions of underlying structural layers within the wafer, such as conductive, semiconductive, or insulative layers. This process is then repeated, together with other steps, until the desired features have been formed on the surface, or in various layers, of the wafer.
Step-and-scan technology works in conjunction with a projection optics system that has a narrow imaging slot. Rather than expose the entire wafer at one time, individual fields are scanned onto the wafer one at a time. Moving the wafer and reticle simultaneously such that the imaging slot is moved across the field during the scan does this. The wafer stage must then be asynchronously stepped between field exposures to allow multiple copies of the reticle pattern to be exposed over the wafer surface. In this manner, the quality of the image projected onto the wafer is maximized.
Conventional lithographic systems and methods form images on a semiconductor wafer. The system typically has a lithographic chamber that is designed to contain an apparatus that performs the process of image formation on the semiconductor wafer. The chamber can be designed to have different grades of vacuum depending on the wavelength of light being used. A reticle is positioned inside the chamber. A beam of light is passed from an illumination source (located outside the system) through an optical system, through an image outline on the reticle, and a second optical system before interacting with a semiconductor wafer.
The reticle can be placed on a platform or stage (hereinafter, both are referred to as “stage”). The stage can be positioned according to parameters of the lithographic system. Similarly, the semiconductor wafer can be placed on a stage. The stage supporting either the reticle or the semiconductor wafer can be moved one or more directions and/or one or more degrees of freedom depending on how the image is to be formed on the semiconductor wafer.
In order to increase throughput, dual wafer stage systems have been developed. Typically, these dual stages can hold and independently control the motion of two wafers at the same time. Throughput is increased by allowing exposure of an aligned wafer on one chuck, while at the same time the second chuck is used to unload the previously exposed wafer, and then load and align the next unexposed wafer. Without the dual wafer stage these operations would have to be done sequentially.
In order to increase resolution, depth of focus, and process latitude the use of phase reticles has been introduced. Phase reticles often requires the exposure of not only the phase reticle, but the additional aligned exposure of a second trimming reticle to achieve the desired result. Thus each field must be exposed twice first with the phase reticle, and then again with the trim reticle, usually under different conditions of illumination. The most common method of executing this double exposure sequence is to first load the phase reticle and expose an entire wafer, then load the trim reticle, and re-expose the wafer. The wafer is then removed from the wafer stage, and the next wafer is loaded. Usually the order of exposure is not critical, so that this time, the trim reticle is exposed first, then the phase reticle is loaded and exposed. This is an “AABBAABB” sequence, which requires one reticle exchange for each wafer processed.
The number of reticle exchanges can be reduced by sequencing multiple wafers through system, and then switching reticles, but then each wafer must be handled twice, and the increased time delay between double exposures can cause process problems.
In some cases, the device being manufactured is small enough so that it is possible to fit both the phase pattern and trim patterns side by side on one reticle, but this is not generally practical. Also the use of a reticle stage that can carry and expose two reticles is possible, but in general rejected to avoid the reduced performance, and added cost that use of such a design may impose.
Therefore, there is a need for a system and method that increases throughput in a dual substrate stage, double exposure lithography system.
BRIEF SUMMARY OF THE INVENTION
Embodiments of the present invention provide a faster more efficient system and method of double exposing reticles on a lithographic system with a dual substrate stage. The method can include the following steps. Patterning a first set of substrates with a first reticle during a first exposure period. Exchanging the first reticle with a second reticle. Patterning the first set of substrates with the second reticle during a second exposure period. Exchanging the first set substrates with a second set of substrates. Patterning the second set of substrates with the second reticle during the second exposure period. Exchanging the second reticle with the first reticle. Patterning the second set of substrates with the first reticle during a third exposure period. Exchanging the second set of substrates with a third set of substrates. Patterning the third set of substrates with the first reticle during the third exposure period. Exchanging the first reticle with the second reticle. Patterning the third set of substrates with the second reticle during a fourth exposure period.
The substrates can be transported on the dual substrate stage between a processing system, which inputs and processes the substrates, and an exposure system, which inputs the reticles and exposes the substrates.
Further embodiments, features, and advantages of the present inventions, as well as the structure and operation of the various embodiments of the present invention, are described in detail below with reference to the accompanying drawings.
REFERENCES:
patent: 5677758 (1997-10-01), McEachern et al.
patent: 5897986 (1999-04-01), Dunn et al.
patent: 6628372 (2003-09-01), McCullough et al.
de Klerk Jos
Galburt Daniel
ASML Holding N.V.
Nguyen Henry Hung
Sterne Kessler Goldstein & Fox P.L.L.C.
LandOfFree
System and method to increase throughput in a dual substrate... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method to increase throughput in a dual substrate..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method to increase throughput in a dual substrate... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3269281