Dynamic information storage or retrieval – Combined independent audio systems
Reexamination Certificate
2001-09-26
2003-09-02
Neyzari, Ali (Department: 2655)
Dynamic information storage or retrieval
Combined independent audio systems
C369S083000, C084S602000
Reexamination Certificate
active
06614729
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
The present invention relates generally to the field of producing digital audio and video recordings of live performances.
BACKGROUND OF THE INVENTION
The invention described herein represents a significant improvement in both the speed at which recordings of live performances can be mass-produced and in the costs of producing such recordings.
Today, the usual medium for distribution of audio recordings is a Compact Disc or CD—which is simply a data storage device which contains audio information stored according to the Red Book standard. Typically, whenever recordings of a live performance are produced for public distribution (such as when a recording artist releases a live CD) the audio portion of the live performance is captured on some type of audio storage device such as an analog multi-track tape recorder.
The resulting tape recording is then mixed, edited, and broken into discrete tracks at a recording studio. This process, often referred to as audio mastering, might include signal processing to optimize song levels to commercial (radio broadcast) standards, compression, normalization, equalization, fades, noise reduction, and any digital editing needed to maximize the sonic quality of the recordings. Typically, audio mastering takes place in a recording studio under the direction of a sound engineer. The process normally requires access to the entire, completed audio recording since many of the customary editing steps—such as normalization, equalization, or adjustment of peak levels—require a comparison of each song or discrete track to the rest of the recording. These global editing steps are also very time consuming. Digital processing of an audio file involves complex algorithms and can often take longer than the actual playing time of a given song or track.
After the audio mastering process is complete, the resulting audio tracks are recorded onto some type of digital media and used to make a glass master with the information stored as pits and lands. The glass master is then used to make the actual CDs, which contain pits and lands corresponding to the original glass master and which are coated with a metallic surface to allow a laser to interpret these pits and lands as a digital signal. The entire CD production process can take months and cost tens or even hundreds of thousands of dollars. Obviously, this system is simply not practical for producing relatively small numbers of recordings of a performance or for producing the recordings quickly.
It is also possible to record a live performance onto recordable optical media such as recordable compact disks (CD-R). Using this type of data disk, information can be written onto the disk after manufacture. CD-R drives capable of storing digital audio onto blank CD-R disks are readily available for use with personal computers. In the typical CD-R disk, a flat plastic substrate is plated with a metallic surface and covered with a dye layer. The dye has the property that when exposed to an appropriate, strong laser light, it changes state. In one state, it is nearly transparent to infrared; in the other, it is more nearly opaque. A CD-R drive is capable of recording information onto the CD-R blank. Thereafter, the information can be read using virtually any type of CD drive, including drives or players intended solely for audio CDs.
The use of CD-R disks to store the recording of a live performance would have a significant advantage over the use of traditional audio CDs in terms of manufacturing time. However, the time required to perform the audio mastering would remain unchanged. Further, since each CD-R blank must be recorded individually in a CD-R drive, the time required to produce significant copies and the sheer numbers of CD-R drives which would be required to produce a significant number of copies would still be commercially unacceptable.
The invention described herein overcomes these shortcomings and—if widely adopted—has the potential to greatly impact two of the most significant problems facing the music and recording industry today.
First, the invention could virtually eliminate unauthorized recordings of live concerts or performances—often referred to as “bootleg recordings.” Although such recordings were relatively rare a decade ago, advances in technology have turned bootlegging into big business—and a big problem for the recording industry. Smaller and better recording devices, digital audio formats which allow unlimited copying with no loss of quality, and low-cost CD-R drives have combined to turn bootlegging into a multimillion dollar activity. Although exact numbers are difficult to determine (since bootlegging is an illegal underground activity in many countries) it is estimated that the entire bootlegging industry generates hundreds of millions of dollars annually. The Recording Industry Association of America estimates that the combination of bootlegged concerts and counterfeit recordings of released CDs cost the recording industry 300 million dollars annually in lost sales.
In addition to the sales losses, bootlegs compete for shelf space and sale with authorized recordings in many record shops. Artists also cannot control the quality of bootleg recordings being released in their name. And of course, bootleggers do not pay royalties to the artists. And finally, the consumer may sometimes be deceived into buying a bootleg CD inadvertently. Some bootlegs have copycat packaging or misleading descriptions, and often there is no indication that the recordings are unauthorized.
The invention described herein has the potential to virtually eliminate the problem of illegal bootlegs. Obviously, bootleggers would have very few customers if higher quality legal recordings of the concerts were available.
A second problem addressed by the invention, is the highly publicized problem of online music trading. The use of file-swapping programs like Napster allows literally millions of individuals worldwide to freely trade music rather than buy it. As on-line trading of music becomes more common, performing artists and record companies may have to derive a greater percentage of their income from live performances. In addition to the revenue generated by ticket prices, a large portion of that income will likely come from concert merchandise, such as the T-shirts and posters now available at nearly every live performance.
A tremendous market already exists for this sort of concert merchandise. It is estimated that the top 100 concert tours in the U.S. alone generate $400 million in music merchandise, not including the price of admission. Some musical performers average as much as $15 per person in merchandise sales.
The invention discussed here has the potential of further enhancing the merchandise revenue stream already available to the performer. The rapid growth of the bootlegging industry shows that there is already a large market for live concert recordings. Widespread use of the invention would allow artists and record companies to tap into this market as a way of offsetting CD sales lost due to the on-line trading of music files.
SUMMARY OF THE INVENTION
One object of the invention is to provide a method and system for efficiently recording a live event such as a musical concert onto a large number of media so that they may be provided to attendees of the event shortly after it has ended.
In accordance with one embodiment of the invention, the different steps in the processes of editing and recording are overlapped with the performance itself and with each other to allow all of the steps to be completed only a short time after the performance is concluded.
In accordance with another embodiment of the invention, during the recording process, small discrete portions of a primary event file (for example one minute segments of the performance) are copied to smaller time-indexed secondary digital files. This allows the digital tracks (possibly corresponding to individual songs) to be easily assembled. It also helps insure all of the important audio signals are included in the fina
Griner David D.
Griner James C.
Burton Randall W.
Griner David D.
Neyzari Ali
Nordstrom Erik
LandOfFree
System and method of creating digital recordings of live... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method of creating digital recordings of live..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method of creating digital recordings of live... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3093294