System and method of analyzing aircraft removal data for...

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Vehicle diagnosis or maintenance indication

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S030000

Reexamination Certificate

active

06567729

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The invention relates generally to the field of data processing for supporting a maintenance decision. More particularly, the invention relates to management and analysis of maintenance-related information for trending and reporting performance data from multiple sub-systems or components that are being monitored. Even more particularly, the invention relates to management and analysis of aircraft data so that problems can be predicted and addressed earlier than is possible by using conventional methodology.
BACKGROUND OF THE INVENTION
Oftentimes, a maintenance process encompasses retrieval, analysis and dissemination of appropriate information to enable decision making regarding preventative maintenance and thus, preempting avoidable repairs or delays. However, such processing typically involves a predominantly manual management and analysis of the maintenance-related information and subsequent distribution of the maintenance decision support information. Because of the inherent delay associated with the predominantly manual maintenance process, under these circumstances, a variety of problems such as, but not limited to, increased maintenance cost and reduced operational efficiency may result. Even worse, these maintenance-related problems could become exacerbated as the complexities increase.
More specifically, a maintenance process of highly complex machines such as airborne vehicles is complicated, as the amount and type of the maintenance-related information collected from disparate sources is significantly large. In addition, appropriate processing of such maintenance-related information to derive a maintenance decision can be a daunting task. For instance, in an aircraft operation, multiple aircraft systems are constantly monitored by flight data acquisition systems to acquire maintenance-related information. The Air Transport Association (ATA) has categorized the monitored aircraft systems in different groups. Such monitored aircraft systems generally include Air Conditioning, Auto Flight, Communications, Fire Protection, Flight Controls, Fuel, Hydraulic Power, Indicating/Recording System, Landing Gear, Navigation, Oxygen, Pneumatic, Onboard Maintenance, Informational, Airborne Auxiliary Power, and Stabilizer. As these aircraft systems are monitored, aircraft data associated therewith, often referred to as “removal or component data” can be readily collected via a variety of data transfer techniques, including but not limited to, Flight Data Recorders (FDRs), Tape and Optical Disk Recovery, Digital Media Recovery (i.e. PCMCIA cards), Aircraft Communications and Reporting Systems (ACARs), VHF Digital Air to Ground Communications (VDLM2), Satellite Air to Ground Data Communications (SATCOM) High Frequency Air to Ground Wireless Data Communication Links (HFDL), and/or Wireless Ground Data Communication Links (GDL).
A typical aircraft maintenance process, for example, for a regularly scheduled service generally entails a manual analysis of maintenance-related information such as aircraft data, often referred to as “maintenance analysis,” which may include manually examining the contents of the aircraft data associated with a particular component of an aircraft. By manually analyzing the aircraft data, a maintenance decision for that particular component of the aircraft may be derived. Contents of the maintenance decision, including maintenance decision support information, may be manually disseminated accordingly. As the maintenance must be completed under certain constraints, a suitable form of communication to disseminate this maintenance decision support information may be employed to issue warnings or recommend repair procedures in response to the maintenance-related information.
In this manner, to perform the maintenance analysis of the aircraft data, a subsystem or a component of an aircraft may be first closely monitored for a predetermined period of time. For example, a data acquisition and analysis system may acquire the aircraft data from multiple onboard sources and analyze the aircraft data to identify symptoms to determine the sub-system or the component operational failures, faults, events for providing maintenance-related information. The maintenance-related information provided by this system can enable the aircraft operators to reduce unscheduled mechanical delays and flight cancellations, thereby reducing bottom line costs.
Unfortunately, management and analysis of maintenance-related information for real-time trending and reporting performance data from one or more sub-systems or components can be difficult. Providing proactive maintenance analysis to minimize reactive maintenance could be even more difficult, as most operators fail to properly utilize the aircraft data for this purpose. Thus, accurate or specific decision support information for maintenance may not be provided prior to the occurrence of maintenance-related problems. Therefore, the operators may not, under these circumstances, benefit from the informational analysis of the maintenance-related information. Accordingly, a suitable transformation of the maintenance-related information is desirable that provides meaningful maintenance decision support information for performing proactive maintenance. Thus, an improved system and method for supporting maintenance decision is desired in the art.
Heretofore, the requirements of providing more proactive maintenance analysis and real-time reporting of a maintenance decision support information, in a manner without compromising accuracy referred to above have not been fully met. What is needed is a solution that simultaneously addresses all of these requirements.
SUMMARY OF THE INVENTION
The present invention generally provides a system and method of analyzing aircraft removal data for preventative maintenance. In one exemplary embodiment, a computer-implemented method of analyzing aircraft data for preventative maintenance, comprising: utilizing an aircraft dataset from at least one operational source; parsing the aircraft dataset into at least one data field; determining an acceptable range of values for the aircraft dataset within the at least one data field to define a threshold for the aircraft dataset; automatically activating a dynamic trigger to indicate a maintenance alert when the threshold is crossed; deriving a performance indication for the at least one operational source by determining one or more performance trends of the aircraft dataset; associating with the maintenance alert a notification having a status level indicative of a maintenance condition for the at least one operational source; combining the performance indication and the notification into an electronic report that forecasts need for preventative aircraft maintenance; and automatically delivering the electronic report to a predetermined location for retrieval by a consumer.
Another embodiment of the invention is based on an electronic media, comprising a program for performing this method. Another embodiment of the invention is based on a computer program, comprising computer or machine readable program elements translatable for implementing this method.
In one another embodiment of the present invention, a method of providing maintenance support, comprising: parsing a maintenance information dataset from at least one operational source into at least one data field to derive an active dataset; setting a trigger having a first limit and a second limit for the at least one data field; analyzing the active dataset for selectively activating the trigger in response to an excursion of the active dataset beyond one of the first limit or the second limit within the at least one data field; associating with the trigger a status indication; processing the active dataset to derive one or more trends for the at least one data field; and transforming the status indication and the one or more trends into a preventative maintenance report for the at least one operational source.
In yet another embodiment of the present invention, a computer-impleme

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method of analyzing aircraft removal data for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method of analyzing aircraft removal data for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method of analyzing aircraft removal data for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3062739

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.