Computer graphics processing and selective visual display system – Display peripheral interface input device – Cursor mark position control device
Reexamination Certificate
1998-10-29
2001-08-28
Nguyen, Chanh (Department: 2675)
Computer graphics processing and selective visual display system
Display peripheral interface input device
Cursor mark position control device
Reexamination Certificate
active
06281881
ABSTRACT:
TECHNICAL FIELD
The present invention relates to the field of systems and methods for receiving input signals from computer input devices such as an ergonomically designed pointing device and providing such signals as user commands to a computer to adjust displayable data files such as documents.
BACKGROUND OF THE INVENTION
Various computer input devices are currently employed to provide a variety of input signals to computers for certain applications. For example, keyboards are an ideal method of inputting alphanumeric characters to the computer for most applications. Joysticks, often used with computer games, provide two-dimensional position signals based on wrist movement. Joysticks provide a particularly intuitive way of providing position signals that correspond to movement either within the plane of the computer screen, or movement perpendicular to the plane of the computer screen (i.e., virtual movement into and out of the screen). Joysticks, however, are bulky and at times awkward, particularly when used in a business setting.
In contrast, most computer pointing devices, such as mice and trackballs, are less bulky. Mice and trackballs both include a housing partially enclosing a rotatable ball and have one or more actuatable buttons. Electronic encoders sense the rotation of the ball and generate signals (“counts”) that indicate the ball's rotation. The counts are used to control the magnitude and direction of two-dimensional movement of a cursor or pointer on a display screen of the computer. Such mice, however, provide only two position signals corresponding to two-dimensional movement.
U.S. Pat. Nos. 5,298,919 to Chang and 5,313,230 to Venolia et al. describe mice capable of providing three-dimensional position signals that permit the illusory positioning of the cursor in three-dimensional space on a two-dimensional video display device. The patents describe mouse-input devices having a rotatable ball and a thumbwheel for providing input signals representing three-dimensional movement.
The devices disclosed by Chang and Venolia et al. teach providing only three-dimensional position signals to a computer. As noted, standard mice and trackballs provide only two-dimensional position signals to a computer. There is a need, however, for a more robust input system for providing various input signals to a computer to control not only three-dimensional positions of an object, but other options or attributes for that object.
Several of such currently available pointing devices for providing multiple input signals to a computer have disadvantages, however, in that they are uncomfortable or difficult to use, especially for relatively long periods of time. This may manifest itself in several ways, for example, the finger or hand of a user may feel tired after operating the pointing device for any length of time. Therefore, a need exists for a pointing device for providing multiple input signals to a computer that is more comfortable and easy to use.
SUMMARY OF THE INVENTION
A U.S. patent application by one of the coinventors entitled “3-D Cursor Positioning Device,” Ser. No. 08/467,549, filed Jun. 6, 1995, which is a continuation of Ser. No. 08/178,524, filed Jan. 6, 1994 (now U.S. Pat. No. 5,473,344), is assigned to the assignee of the present application. This application describes an input device for a computer that has a rotatable ball coupled with first and second transducers to produce first and second signals indicating rotation of the ball as with standard mice and trackballs. The input device also includes a roller protruding from the top or side of the device which is coupled to a third transducer for providing a third signal that indicates rotation of the roller. The third signal can be used not only for providing a third position signal, but also can be used to control a non-positional characteristic of an item displayed on a computer's visual display. The displayed item or “video object” can be a cursor, graphic, or other image or graphical data represented on the visual display. The first and second input signals can be used as standard position signals to position a cursor on a selected video object, while the roller can be rotated to provide the third signal that adjusts a characteristic “appearance” of the video object, such as the size, color, style, font, border, arrangement, brightness, etc. of the object.
The input device of the application is also directed to a system for selecting one of several overlapping windows or “plys.” Typical methods of selecting one of several overlapping plys requires users to position the cursor on the desired ply and clicking the mouse to select that ply. The device in the application is directed to a system that allows the third signals produced by rotation of the roller to scroll through and select one of several overlapping plys (i.e., windows), where at least one of the plys is capable of fully obscuring at least some of the other plys. Each of the several plys corresponds to a predetermined amount of rotation of the rotatable roller. A computer is responsive to the third signal to determine a user selected amount of rotation of the roller so as to scroll through and select a visually obscured ply with the predetermined amount of rotation that corresponds to the user's selected amount of rotation and thereby display a selected ply.
As explained above, pointing devices typically provide two-dimensional position signals to a computer. Certain pointing devices allow three or more signals to be input to a computer to permit illusory positioning of a cursor in three-dimensional space on a two-dimensional visual display. The above-described application also describes the third signal to control the non-positional aspect or “appearance” of a selected object displayed on the visual display, or to select one of several overlapping plys.
Improving upon the device and system of the coinventor's prior application, a similar user input device such as a mouse is preferably coupled to a computer having a visual display device. The computer is capable of displaying a data file such as a word processing document or a spreadsheet document, where the data file has adjustable display characteristics such as size (zoom) or data structure (content). As the user rotates the roller, the mouse generates roller signals that are interpreted by the computer. The roller signals, together with a given application, can preferably be used in at least two inventive techniques for navigating through a document: “spatial navigation” and “data navigation.”
There are at least five modes of spatial navigation. In the first mode, a user preferably rotates the roller to cause the computer and display device to adjust the magnification of the data file or document being displayed, and thereby zoom into and out of the document. For example, in a word processing document, a user can rotate the roller in one direction to zoom out from displaying only a portion of a page of the document to displaying several complete pages of the document simultaneously on the display device.
In a second spatial navigation mode, the user can rotate the roller or move the mouse to pan through the document in a selected direction. The panning mode is particularly suited for a large two dimensional document whose length and width are much greater than the size of the display device. In a third spatial navigation mode, the user can initially rotate the roller or move the mouse to cause the document to automatically and continuously scroll in a direction and at a rate based upon the initial rotation of the roller or movement of the mouse without the need for additional user input. As a result, the automatic scroll mode frees the user's hands to perform additional tasks.
In a fourth spatial navigation mode, the user can continually rotate the roller to navigate through the document to scroll up or down through a lengthy document. In a fifth spatial navigation mode, the user can rotate the roller or move the mouse to scroll through a document using scroll bars prov
Adams Aditha M.
Holmdahl Todd
Ledbetter Carl
Siddiqui Kabir
Microsoft Corporation
Nguyen Chanh
Westman Champlin & Kelly P.A.
LandOfFree
System and method of adjusting display characteristics of a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method of adjusting display characteristics of a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method of adjusting display characteristics of a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2456585