System and method for writing back multiple results over a...

Electrical computers and digital processing systems: processing – Instruction decoding – Decoding instruction to accommodate variable length...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C712S033000, C710S120000, C710S120000, C710S066000, C710S021000

Reexamination Certificate

active

06275926

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The present invention is directed, in general, to processors and, more specifically, to a system and method for writing back multiple results within the confines of a single-result bus and a processor employing the same.
BACKGROUND OF THE INVENTION
The ever-growing requirement for high performance computers demands that computer hardware architectures maximize software performance. Conventional computer architectures are made up of three primary components: (1) a processor, (2) a system memory and (3) one or more input/output devices. The processor controls the system memory and the input/output (“I/O”) devices. The system memory stores not only data, but also instructions that the processor is capable of retrieving and executing to cause the computer to perform one or more desired processes or functions. The I/O devices are operative to interact with a user through a graphical user interface (“GUI”) (such as provided by Microsoft Windows™ or IBM OS/2™), a network portal device, a printer, a mouse or other conventional device for facilitating interaction between the user and the computer.
Over the years, the quest for ever-increasing processing speeds has followed different directions. One approach to improve computer performance is to increase the rate of the clock that drives the processor. As the clock rate increases, however, the processor's power consumption and temperature also increase. Increased power consumption is expensive and high circuit temperatures may damage the processor. Further, the processor clock rate may not increase beyond a threshold physical speed at which signals may traverse the processor. Simply stated, a practical maximum exists to the clock rate that is acceptable to conventional processors.
An alternate approach to improve computer performance is to increase the number of instructions executed per clock cycle by the processor (“processor throughput”). One technique for increasing processor throughput is pipelining, which calls for the processor to be divided into separate processing stages (collectively termed a “pipeline”). Instructions are processed in an “assembly line” fashion in the processing stages. Each processing stage is optimized to perform a particular processing function, thereby causing the processor as a whole to become faster.
“Superpipelining” extends the pipelining concept further by allowing the simultaneous processing of multiple instructions in the pipeline. Consider, as an example, a processor in which each instruction executes in six stages, each stage requiring a single clock cycle to perform its function. Six separate instructions can therefore be processed concurrently in the pipeline; i.e., the processing of one instruction is completed during each clock cycle. The instruction throughput of an n-stage pipelined architecture is therefore, in theory, n times greater than the throughput of a non-pipelined architecture capable of completing only one instruction every n clock cycles.
Another technique for increasing overall processor speed is “superscalar” processing. Superscalar processing calls for multiple instructions to be processed per clock cycle. Assuming that instructions are independent of one another (the execution of each instruction does not depend upon the execution of any other instruction), processor throughput is increased in proportion to the number of instructions processed per clock cycle (“degree of scalability”). If, for example, a particular processor architecture is superscalar to degree three (i.e., three instructions are processed during each clock cycle), the instruction throughput of the processor is theoretically tripled.
These techniques are not mutually exclusive; processors may be both superpipelined and superscalar. However, operation of such processors in practice is often far from ideal, as instructions tend to depend upon one another and are also often not executed efficiently within the pipeline stages. In actual operation, instructions often require varying amounts of processor resources, creating interruptions (“bubbles” or “stalls”) in the flow of instructions through the pipeline. Consequently, while superpipelining and superscalar techniques do increase throughput, the actual throughput of the processor ultimately depends upon the particular instructions processed during a given period of time and the particular implementation of the processor's architecture.
The speed at which a processor can perform a desired task is also a function of the number of instructions required to code the task. A processor may require one or many clock cycles to execute a particular instruction. Thus, in order to enhance the speed at which a processor can perform a desired task, both the number of instructions used to code the task as well as the number of clock cycles required to execute each instruction should be minimized.
Statistically, certain instructions are executed more frequently than others. If the design of a processor is optimized to rapidly process the instructions which occur most frequently, then the overall throughput of the processor can be increased. Unfortunately, the optimization of a processor for certain frequent instructions is usually obtained only at the expense of other less frequent instructions, or requires additional circuitry, which increases the size of the processor.
One area in which less frequent instructions have dictated a compromise in design is in the area of multiple-result instruction processing. For each result of an instruction, a portion of a bus must be used to pass the result from an execution unit to the physical register file. For example, in 32 bit microprocessor architectures that has instructions with two results, the microprocessor uses two 32 bit buses to pass the instruction's two results from the execution unit to the physical register file. The most common instructions that contain two or more results are the divide and the multiply instructions.
Microprocessors use multiple result buses to reduce the time required to process these less frequent instructions. However, the additional circuitry required to implement theses additional buses increase the size of the processor and increase the processor's power usage. Therefore, what is needed in the art is a way to process multiple-result instructions without the cost of additional result buses.
SUMMARY OF THE INVENTION
To address the above-discussed deficiencies of the prior art, it is a primary object of the present invention to provide a way to write back the results of instructions that have more results than the result bus can convey in parallel.
In the attainment of the above primary object, the present invention provides, for use in a processor having a result bus of insufficient width to convey all results of a given multiple-result instruction concurrently, a system for, and method of, writing back the results of the multiple-result instruction. In one embodiment, the system includes: (1) multi-result node creation circuitry that creates a multi-result node having at least first and second results for the multiple-result instruction and (2) node transmission circuitry, coupled to the multi-result node creation circuitry, that transmits the first and second results sequentially over the result bus.
The present invention introduces the broad concept of employing multi-result nodes (nodes employed for the purpose of carrying results) to convey one or more of the results of a multi-result instruction. This allows the result bus to convey more results for a given instruction than could be otherwise conveyed were all the results to be conveyed at one time.
In one embodiment of the present invention, the result bus has a width sufficient to convey only one result. However, the broad scope of the present invention contemplates a result bus capable of conveying two or more results in parallel.
In one embodiment of the present invention, the multiple-result instruction is a two-result instruction. Those skilled in the pertinent art will understand, ho

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for writing back multiple results over a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for writing back multiple results over a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for writing back multiple results over a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2535630

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.