Electrical computers and digital processing systems: multicomput – Remote data accessing
Reexamination Certificate
1998-01-26
2002-07-23
Wiley, David (Department: 2155)
Electrical computers and digital processing systems: multicomput
Remote data accessing
C709S219000, C709S227000
Reexamination Certificate
active
06425000
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention is directed toward the field of remotely controlling the actions of a host computer system using a telephone connection, particularly in triggering a predetermined program, sequence of events, or series of actions at the host system. Such a sequence of events could be, for example, a script of commands which cause the host computer system to connect to the Internet for subsequent access by a remotely located user.
Recently, there has been a proliferation of computer systems that are connected to the Internet, the global information network. Most of the services available on the Internet are provided by large organizations, such as Government, University, and large corporations. These institutions have the capital and resources to spend on high-powered server computers with corresponding dedicated links to the Internet. These dedicated links range in bandwidth from 56 KB for an ISDN (Integrated Services Digital Network) line to 1.5 MB for a full T1 line. Such links are typically dedicated connections to an Internet Service Provider (“ISP”), where the ISP then provides a physical connection to the Internet. For small companies and individual users desirous of setting up a server to provide services, such as a World-Wide-Web (“Web”) server, or an FTP. (File Transfer Protocol) server, the costs of leasing and maintaining a dedicated connection to an ISP is prohibitive. Without a dedicated connection to the Internet, there is no means of providing on-demand access to remote users who want to take advantage of the services provided by the server. The present invention overcomes this problem by providing a system and method for controlling the actions of a host computer system using a simple telephone call, and in particular, for triggering a host computer system to make a connection to a computer network, such as the Internet, whereupon a remote user, or multiple remote users, can then connect to the host system over the network, thereby circumventing the need for a costly dedicated connection to an ISP.
Previous systems for controlling a host computer system over a telephone connection are limited to two basic concepts: (1) remote power-up; and (2) remote access. The remote power-up systems include a circuit which detects a telephone call and applies power to the host computer. According to these prior art systems a telephone ring detector and power switch are interposed between the power outlet and the remote computer system to be activated. When a telephone call is detected on the phone line connected to the ring detector, the power switch is activated and the host computer's power supply is connected to the power outlet. One disadvantage of these prior art systems is that they are limited to simply powering up the computer. These systems do not provide any mechanism, signal, or intelligence which causes the host computer to perform a sequence of predetermined actions based on the detection of the phone call.
An additional disadvantage of these prior art systems is that there is no means to trigger a program, or programs, at the host computer system while the host system is activated, transparent to other users of the system. Furthermore, the remote power-up systems inherently disrupt any other users of the host system, and are therefore useful only for single-user computer systems, or Personal Computers (PC's).
Previous remote access systems permit a remotely located computer system to gain access to a host system through an authorization device, and thereafter to control the actions of the host system. According to these types of systems, a user at a remote location from the host computer system gains access over a telephone connection between the two computers. Each computer includes a modem for communication over the phone line. In order to selectively permit access to certain users, but deny access to others, these remote access systems require the use of special hardware on both ends of the telephone connection, wherein the special hardware is an access control device connected between the respective computer and modem on each end of the connection. The hardware devices perform authorization handshaking using special codes, and if the codes match, the hardware devices permit access to the modem resources connected to the two computers. After the hardware devices have performed the authorization handshaking, the user of the local system then accesses the host system and controls its operations directly, as though he were located at the host system.
These prior art remote access systems assume that the control of the host system is to be carried out by a local computer after access is authorized. One disadvantage of these systems is that they do not teach that a remote user can trigger a predetermined sequence of events at a host system using a ring signal on a phone line. For any control to occur in these systems, the host computer must actually answer the phone call and create a logical connection between the host and local systems.
An additional disadvantage of these systems is that they are limited to access by one remote user at a time per modem, since each remote user creates a dedicated phone line connection to the modem resource of the host system. The only way to circumvent this shortcoming is for the host system to provide a modem-pool of resources. Such a modem-pool can support multiple remote users, but increases the expense and complexity of the host system. These systems do not teach that multiple remote users can access the services of the host system simultaneously through a single communications link.
Another disadvantage of the previous remote access systems is their inherent bandwidth limitation. Because the remote access systems are limited to communication using modems on either end of the connection, the speed of communication will be limited to the speed of state of the art analog modems, which is currently 28.8 Kbps. These systems do not teach the ability to create an Internet connection using TCP/IP (Transfer Control Protocol/Internet Protocol), such that the remote user could connect at a much higher bandwidth using, for example, a 56 KB or 128 KB ISDN connection, or even a full T1 1.5 MB connection. The previous remote access systems are limited to analog modem communication.
Another prior art system combines the teachings of the remote access systems and the remote power-up systems by providing a remote power-up device that is triggered by a phone call, and which “boots” a computer system and causes an access control program stored in the “boot drive” to be activated. Like the other remote access systems, this system assumes that the control of the host system is to be carried out by a local computer. The host system is controlled only after the access software permits access to the local user by first answering the telephone call and then establishing a logical connection between the modem of the host system and that of the local computer. This system does not teach the triggering of a predetermined sequence of events at a host system using a telephone ring signal. In addition, this system requires two computer systems, one at either end of the connection, and also requires that the host computer system be powered down before any type of control or communication can take place. This system does not teach multiple-user remote access through a single communications device. Furthermore, this system is limited to analog modem communication, as above, and therefore cannot support high bandwidth communications.
Therefore, there remains a need for a system and method wherein a predetermined program, or sequence of events, can be triggered for execution at a host computer system using a telephone ring signal.
There remains a further need for such a system and method wherein the predetermined program is a script of commands which cause the host computer system to connect to the Internet.
There remains a further need for such a system and method wherein after the host computer system has made a co
Carmello Salvatore
Vesel Richard
Jones Day Reavis & Pogue
Softell
Tran Philip B.
Wiley David
LandOfFree
System and method for triggering actions at a host computer... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method for triggering actions at a host computer..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for triggering actions at a host computer... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2818674