System and method for timing detector measurements in a...

Telecommunications – Transmitter and receiver at separate stations – Plural transmitters or receivers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S452100, C455S067110, C370S280000, C370S338000, C370S328000, C375S222000

Reexamination Certificate

active

06731946

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to wireless communication systems, and more particularly to a wireless communication system that provides telephone, data and Internet connectivity to a plurality of users.
2. Description of Related Art
Several systems are currently in place for connecting computer users to one another and to the Internet. For example, many companies such as Cisco Systems, provide data routers that route data from personal computers and computer networks to the Internet along conventional twisted pair wires and fiber optic lines. These same systems are also used to connect separate offices together in a wide area data network.
However, these systems suffer significant disadvantages because of the time and expense required to lay high capacity communications cables between each office. This process is time consuming and expensive. What is needed in the art is a high capacity system that provides data links between offices, but does not require expensive communication cables to be installed.
Many types of current wireless communication systems facilitate two-way communication between a plurality of subscriber radio stations or subscriber units (either fixed or portable) and a fixed network infrastructure. Exemplary systems include mobile cellular telephone systems, personal communication systems (PCS), and cordless telephones. The objective of these wireless communication systems is to provide communication channels on demand between the subscriber units and the base station in order to connect the subscriber unit user with the fixed network infrastructure (usually a wired-line system). Several types of systems currently exist for wirelessly transferring data between two sites.
In wireless systems using multiple access schemes, frames of time are the basic transmission unit. Each frame is divided into a plurality of slots of time. Some time slots are used for control purposes and some time slots are used for information transfer. Information is typically transmitted during time slots in the frame where the time slots are assigned to a specific subscriber unit. Subscriber units typically communicate with the base station using a “duplexing” scheme which allows for the exchange of information in both directions of connection.
Transmissions from the base station to the subscriber unit are commonly referred to as “downlink” transmissions. Transmissions from the subscriber unit to the base station are commonly referred to as “uplink” transmissions. Depending upon the design criteria of a given system, the prior art wireless communication systems have typically used either time division duplexing (TDD) or frequency division duplexing (FDD) methods to facilitate the exchange of information between the base station and the subscriber units. Both the TDD and FDD duplexing schemes are well known in the art.
In TDD systems, duplexing of transmissions between a base station and its subscriber units is performed in the time domain. A selected subscriber unit typically communicates with a selected base station using a specific pre-defined radio frequency. The channel is time-divided into repetitive time periods or time “slots” which are employed for uplink and downlink transmissions. In contrast to FDD systems, frequency allocation or frequency reuse patterns are simplified because there is no requirement of frequency separation between the uplink and downlink transmissions.
Both the uplink and downlink transmissions occur during different pre-determined time slots using the identical radio frequency. In some current wireless communication systems, there are base stations that act as central points for receiving and transmitting data to a plurality of customer sites. These base stations typically connect to other data systems such as the Internet, the phone system or other systems that provide user data to the customer's sites. As can be imagined, it is important to maintain a strong signal between the base station and the customer sites. Thus, in conventional systems, power detectors within the base station and customer sites continually monitor wireless transmissions in order to tune the system to receive the strongest possible signal.
Unfortunately, prior customer sites relied on complicated control signals to measure transmission power levels. These control signals were implemented because in TDD systems the transmit and receive paths use the same frequency. Thus, it was possible that when the customer site equipment took a power measurement, it was actually measuring a transmission signal from a nearby customer site that was transmitting on the same frequency. The addition of the control signals ensured that power measurements were taken from the base station, and not a nearby customer site.
Moreover, in some prior systems, the customer site equipment was separated into indoor units and outdoor units. The indoor units typically included the modem and electronics for connected with the customer's equipment. The outdoor unit was installed on the exterior of the building and included the antenna for receiving and transmitting wireless user data. However, in these systems, the outdoor unit did not independently know when the base station was transmitting.
Some prior systems attempted to solve this problem by including a gating signal between the indoor unit and the outdoor unit. The gating signal could be used to instruct the outdoor unit to sample its receive detectors at a particular time, thus ensuring that the receive detectors would measure signals from the base station. Unfortunately, adding this signal to the transmission cable between the outdoor unit and the indoor unit requires costly hardware changes. In addition, transmitting the extra gating signal across the transmission cable increases spurs and other undesirable effects in the data transmission pathway.
This problem is compounded by the fact that the outdoor unit does not contain a modem. A modem could serve as a conduit for the outdoor unit to receive additional commands. Thus, the outdoor unit, by itself, cannot determine the proper time to sample the receive detectors.
Thus, what is needed in the art is a convenient system at the customer site for accurately measuring the power of transmission signals from the base station. Such a system is described below.
SUMMARY OF THE INVENTION
One embodiment of the invention is a wireless communication system having a plurality of base stations and customer sites, wherein data is transferred between said base stations and said customer sites, and wherein said system comprises preset downlink time segments for transmitting said data between the base stations and the customer sites. This embodiment includes: an indoor unit comprising a first modem configured to modulate/demodulate data transmitted between the base stations and the customer sites, wherein the indoor unit is adapted to transmit a control message at a predetermined time with respect to said preset downlink time segments; an outdoor unit comprising a micro controller and a signal detector, said outdoor unit being adapted to receive the control message and, in response to receiving said control message, read said signal detector; and a broadband cable linking the indoor unit to the outdoor unit.
Another embodiment of the invention is a wireless communication system having a plurality of base stations and customer sites, wherein data is transferred between said base stations and said customer sites, and wherein said system comprises preset downlink time segments for transmitting said data between the base stations and the customer sites. This embodiment includes: an indoor unit comprising a first modem configured to modulate/demodulate data transmitted between the base stations and the customer sites, said indoor unit further comprising a programmable memory adapted to transmit a control message at a predetermined time with respect to said preset downlink time segments; an outdoor unit comprising a micro controller and a signal detector, said outdoor unit

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for timing detector measurements in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for timing detector measurements in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for timing detector measurements in a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3232172

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.