System and method for site specific therapy

Surgery – Devices transferring fluids from within one area of body to... – With flow control means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S504000, C604S028000, C604S264000

Reexamination Certificate

active

06537241

ABSTRACT:

TECHNICAL FIELD
In one aspect, the present invention relates to methods and apparatuses for treating microcirculatory problems, including transient and reversible conditions that do no involve structural injury, as well as permanent or chronic conditions that do involve structural injury to the microcirculation. In another aspect, the invention relates to methods and apparatuses for augmenting normal microcirculation. In a related aspect, the invention relates to methods and apparatuses for treating conditions that involve osteonecrosis, compartment syndrome, edema, and skin flap survival.
In yet another aspect, the present invention relates to methods and devices for addressing cerebral edema, and to materials, such as catheters (including vetnriculosotomy catheters) and semipermeable membranes, for use in site specific treatment of tissues and tissue disorders.
BACKGROUND OF THE INVENTION
A number of clinical conditions involve (e.g., are caused by and/or themselves cause) impaired circulation, and particularly circulation within interstitial spaces and within discrete, localized tissues. Among the more vexing examples of such circulatory afflictions are osteonecrosis (e.g., avascular necrosis), compartment syndrome, and edema (and in particular, cerebral edema).
A number of conditions involve poor blood supply to the bone, leading to bone necrosis. Avascular necrosis of the proximal femur, for instance, is the disabling end result of a variety of disease processes that can affect patients of all ages. There is no treatment presently available that can predictably alter the natural history of the disorder. Clinical and radiographic progression to femoral head collapse occurs in approximately 80 percent of cases, and 50 percent undergo total hip replacement within three years. Numerous techniques have been attempted aimed at promoting the early revascularization of the femoral head, with the goal of reversing the usual process of joint deterioration. These approaches include muscle pedicle transfer and vascularized bone grafts.
Other methods, including bone remodeling and fracture repair are. similar at the cellular level, and involve the coordinated delivery of a variety of cellular elements such as growth factors, such as transforming growth factor beta (TGF-beta), fibroblast growth factor (FGF) and bone morphogenetic protein. Several technical barriers to the treatment of AVN of the femoral head and neck include the limited blood supply of the site, difficult surgical access, and the accelerated progression of the disease due to biomechanical demands of walking on the hip joint.
Acute compartment; syndrome generally involves impaired circulation within an enclosed fascial space, leading to increased tissue pressure and necrosis of muscle and nerves. The soft tissue of the lower leg is contained within four compartments, each bounded by heavy fascia—the anterior, lateral, superficial posterior, and deep posterior compartments. The anterior compartment holds the major structures for ankle dorsiflexion and foot and extension. Direct trauma, ischemia, or excessive, unaccustomed exercise can result in hemorrhage and swelling inside the anterior compartment. This swelling will increase pressure on the nerves, veins and arteries inside the compartment. Without arterial circulation, muscle cells will die. In addition, the prolonged compression of nerves can destroy their ability to function.
The neurovascular compression continues to worsen in the following symptoms: weakness or inability to dorsiflex the foot or extend the great toe, decreased ability of the peroneal tendon to evert the foot, and marked itching or prickling sensations in the web between the first and second toe or over the entire dorsal area of the foot. These symptoms must be identified quickly, since misdiagnosis can lead to permanent neuromuscular damage and physical disability.
Diagnosis involves clinical symptoms such as pain and swelling, and signs such as tense compartment pain on passive stretching, parathesia and decreased pulse, and increases in intracompartmental pressure. Once diagnosed, the injury requires immediate decompression through surgical release of the fascia covering the area. Others suggest treatment means include the use of a sympathetic blockade, hyperbaric oxygen therapy, and treatment with mannitol and/or alloperinol.
The characteristics of acute tissue edema are well known, and the condition continues to be a clinical problem, particularly since edema can be detrimental to the tissue as a result of disruption of the microcirculation. Tissue swelling results in increased diffusion distances, which in turn decreases interstitial nutrient delivery. Irreversible disruption of the microcirculatory system can occur as a result of unresolved acute injury. Resolution of tissue edema is problematic since natural mechanisms by which edema resolves are also affected by the edema. Edema compresses venules and lymphatic vessels, and inflammation makes lymphatic vessels hyperpermeable. Pharmacologic treatment is often not effective since blood borne agents have difficulty reaching their target tissue.
Cerebral edema (also known as brain swelling), includes vasogenic cerebral edema (most common form of edema) which manifests itself in the form of increased permeability of small vessels (breakdown of blood-brain barrier) and the escape of proteins and fluids into extracellular space, especially of white matter. Other forms of cerebral edema include cytotoxic cerebral edema (cellular brain edema) and interstitial edema.
Cerebral edema can be caused by ischemia, loss of oxygen, or focal disruption or loss of blood supply such as stroke. In the case of stroke, the specific area must be treated early to prevent further damage. The diagnosis of cerebral edema is based on changes in mental status, imaging, and measurement of intracranial pressure. Conventional treatment of cerebral edema is controversial. Some practictioners insist on keeping the blood pressure high to overcome high intracranial pressure, while others keep the blood pressure low in the hopes of limiting intracranial pressure. Opening the skull generally cannot be done to relieve pressure, because the brain tissue would herniate out the opening causing significant tissue damage. Giving intravenous treatments is also not effective because the bra in microcirculation is disrupted so deilivery to the brain is impaired.
Neurologic damage initiated by traumatic brain injury (TBI) continues to evolve over a period of hours to days following injury, due to deleterious delayed or secondary insults. The formation of cerebral edema, which, in turn, can lead to elevated intracranial pressure (ICP), is one of the most prevalent secondary insults serving to increase patient morbidity and mortality after TBI. ICP rises rapidly with the addition of a small intracranial fluid volume, due to the rigid and relatively inflexible nature of the skull. Complicating factors include relative noncompressability and constant volumes of brain tissue, blood, and cerebrospinal fluid (CSF) within the craniospinal intradural space. Brain swelling leading to dangerously elevated ICP develops in 40-50% of TBI patients with a Glascow Coma Scale (GCS) of 8 or less, and higher ICP levels have been repeatedly shown to lead to poor prognosis or outcome.
Monitoring of ICP is considered appropriate for all patients with severe TBI. While the placement of an ICP monitor is invasive, the benefits of ICP monitoring are felt to offset this factor, carry a relatively small risk of complications (e.g., infection, hemorrhage, malfunction, obstruction or malposition), and rarely result in increased patient morbidity. Percutaneous devices (e.g., ventriculostomy catheters) for use in monitoring ICP monitoring are commercially available in a variety of styles and from a number of sources. Such devices are commonly placed within the cerebral ventricles, where they enable accurate and reliable monitoring of ventricular pressure and can be used for the therapeutic convective drainage of CSF.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for site specific therapy does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for site specific therapy, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for site specific therapy will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3081902

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.