System and method for remotely monitoring asthma severity

Surgery – Diagnostic testing – Respiratory

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S300000, C600S538000, C128S126100, C128S904000

Reexamination Certificate

active

06283923

ABSTRACT:

A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent & Trademark Office file or records, but otherwise reserves all copyright rights whatsoever.
A microfiche appendix containing source code listing utilizing an exemplary embodiment of the invention is included as part of the Specification and is hereinafter referred to as Appendix I. Appendix I includes 2 microfiche with 96 frames.
FIELD OF THE INVENTION
The present invention relates in general to the field of remote monitoring and diagnosing asthma and related symptoms. More particularly, the present invention relates to a system and method for remotely monitoring asthma severity in real-time via wireless and landline communications systems.
BACKGROUND OF THE INVENTION
Approximately 15 million Americans suffer in varying degrees from different forms of asthma. In 1990 alone, nearly 6.2 billion dollars were spent in total in the United States on asthma-related costs. Approximately 2 billion dollars of this amount were spent on in-patient hospital and emergency room services, and approximately 2.6 billion dollars on indirect costs such as loss of work, child care and premature death. See K. B. Weiss, P. J. Gergen and T. A. Hodgson, “An Economic Evaluation of Asthma in the United States,”
New Eng. J. Med.
, vol. 326, pp. 862-866 (1992). Despite advances in the treatment of asthma, the morbidity and mortality of the disease has increased significantly during the past several years. Moreover, asthma continues to present significant management problems for patients trying to cope with the disease on a day-to-day basis and for physicians providing medical care and treatment.
A common problem in assessing the severity of asthmatic symptoms is that patients frequently misperceive and underestimate the severity of airway obstruction. See E. R. McFadden, R. Kiser and W. J. De Groot, “Acute Bronchial Asthma: Relations Between Clinical and Physiological Manifestations,”
New Eng. J. Med
., vol. 288, pp. 221-225 (1973); A. R. Rubinfeld, “Pain MCF: Perception of Asthma,”
The Lancet
, pp. 882-884 (1976). Consequently, in-home monitoring of asthmatic symptoms, combined with patient education, has been shown to significantly reduce the incidence of asthma exacerbation and subsequent hospitalization. See “Li JTC. Home Peak Expiratory Flow Rate Monitoring in Patients With Asthma.,”
Mayo Clin. Proc
., vol. 70, pp. 649-656 (1995).
In-home monitoring of asthma severity is especially useful for detecting diminished lung function before serious respiratory symptoms become evident. See R. Beasley, M. Cushley and S. T. Holgate, “A Self-Management Plan in the Treatment of Adult Asthma,”
Thorax
, vol. 4, pp. 200-204 (1989). By identifying diminished lung function before clinical symptoms develop, a patient or physician may intervene so as to prevent worsening of a condition which may otherwise result in hospitalization or death. As such, the Expert Panel of National Asthma Education and Prevention Program considers ongoing monitoring of pulmonary function as an essential part of asthma management.
Although effective for managing and treating asthma, the reliability and accuracy of conventional in-home monitoring systems are limited by several factors. First, conventional in-home monitoring systems do not allow physicians to review and assess test results in a timely manner. Even the most advanced conventional systems, which gather peak flow data, only allow physicians to download and review patient data on a monthly or weekly basis. Still others allow patients to fax peak flow data used to generate reports that are reviewed monthly by the physician. Conventional in-home monitoring systems do not allow the timely and reciprocal exchange of patient data and medical advice between the physician and the patient, and provide no means for notifying the physician or patient of any changes in peak flow trends that occur between scheduled reports. As such, if an ominous trend or asthma exacerbation occurs between downloads or other information exchange, conventional in-home monitoring systems do not allow physicians to recognize potential problems or intervene until after the monthly or other periodic report has been generated and reviewed.
Second, conventional in-home monitoring systems completely rely on the patient's ability to properly perform and document the tests. Conventional systems do not provide automated tools for assessing the patient's compliance, and do not provide capabilities for providing meaningful reciprocal data exchange between the patient and the physician as the test is being performed.
Third, conventional systems use simple, unsophisticated and frequently inaccurate methods for evaluating the severity of asthmatic symptoms. For example, conventional systems rely on peak expiratory flow (“PEF”) measurements to evaluate asthma severity. Although easy to administer, the accuracy of PEF tests can vary largely from patient to patient. This is so because the accuracy of the PEF measurements depend largely upon the patient's effort and the strength of his' or hers' expiratory muscles. In fact, several studies have shown the presence of persistent airway obstructions in asymptotic children and adults having seemingly normal PEF'S. See A. C. Ferguson, “Persistent Airway Obstruction in Asymptomatic Children With Asthma With Normal Peak Expiratory Flow Rates,”
J. Allergy Clinical Immunology
, vol. 82, pp. 19-22 (1988); C. H. Chiang and K. Hsu, “Residual Abnormalities of Pulmonary Function in Asymptomatic Young Adults Asthmatics with Childhood-Onset Asthma,”
J. Asthma
, vol. 34, pp. 15-21, (1997).
By contrast, the Forced Vital Capacity test (“FVC”), which requires sophisticated computerized analysis, has been shown to be a more precise test for evaluating asthma severity. The FVC test is also better than PEF tests for assessing the degree of small airways resistance. See R. E. Hyatt and L. F. Black, “The Flow Volume Curve,”
Am. Rev. Resp. Dis
., vol. 107, pp. 191-199 (1973). In short, the same study also concluded that FVC tests provide the most reliable assessment of airway dysfunction in asthmatics. See id.
And lastly, conventional in-home monitoring systems do not provide computerized clinical decision support tools for processing and evaluating test data, thus leaving physicians with voluminous data which is very difficult to analyze in a timely and effective manner. Moreover, conventional in-home monitoring systems do not provide means for alerting the patient, in a real-time manner, of potentially serious respiratory conditions the may require immediate treatment and/or hospitalization.
As such, asthma continues to present significant management problems for patients attempting to cope with the disease on a day-to-day basis and for the physicians guiding and advising them. For the reasons noted above, conventional in-home monitoring systems and methods are limited and remain largely inadequate.
SUMMARY OF THE INVENTION
The aforedescribed limitations and inadequacies of conventional asthma monitoring techniques are substantially overcome by the present invention, which in a preferred embodiment is a system for monitoring asthma that includes: a remotely located asthma monitoring station for administering a patient self-test and for gathering test data and relevant patient information indicative of asthmatic symptoms; a central processing facility for receiving the test data and patient information from the monitoring station, processing the test data to determine whether the test data is valid, analyzing valid test data to generate test results and an appropriate response message to the monitoring station, storing the test results in a central data repository, and disseminating the test results and response message in a timely manner as required; and a remotely located diagnosis/evaluation station f

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for remotely monitoring asthma severity does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for remotely monitoring asthma severity, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for remotely monitoring asthma severity will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2458396

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.