System and method for remote management of equipment...

Communications: electrical – Condition responsive indicating system – Specific condition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S506000, C701S108000, C701S120000

Reexamination Certificate

active

06646564

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the monitoring of operating equipment and, more specifically, to the automated monitoring and control of equipment operating at a remote site.
2. Description of the Related Art
The cooling of food products has long been known to help prolong the healthy life of the food and to slow the growth of harmful substances, such as bacteria. While blocks of ice manually packed around food were first used to keep food cool, mechanical refrigeration was introduced in the 19
th
century to more efficiently and reliably cool food, the rooms in which the food was stored, and the rooms in which the food was prepared. More recently, as the need to provide colder temperatures than traditional evaporative refrigeration equipment could produce, cryogenic equipment was developed and refined to produce temperatures well below 0° Celsius. In addition to food preservation, other aspects of food product processing and preparation have been facilitated by cryogenic processing, including food slicing, grinding, and glazing. Because of the critical products and processes protected by contemporary refrigeration and cryogenic systems, the continuous and proper operation of these systems is constantly monitored to identify and remedy any operational problems quickly. This necessitates dedicated, knowledgeable people constantly on staff to monitor and fix any problems that may arise. However, many sites operating such cooling equipment can neither afford or justify having the required skilled technicians on site to diagnose and remedy equipment problems as they arrive. Furthermore, as cooling equipment becomes more complex, even trained service personnel lack the knowledge to quickly diagnose and efficiently fix the multitude of equipment malfunctions that may arise. Even minor deviations from the proper operating parameters for the equipment, while visually indistinguishable to the user or technician, can signal a deteriorating condition that may ultimately bring down the operation of the equipment, with potentially large and damaging losses to not only the cooling equipment but, more importantly, also to the products and processes protected by such cold temperatures.
These and other drawbacks, problems, and limitations of conventional remote management of equipment are overcome according to exemplary embodiments of the present invention
SUMMARY OF THE INVENTION
Exemplary embodiments of the present invention are directed to a system and method for remote monitoring and control of the operating parameters and performance levels for equipment, including cooling equipment such as cryogenic freezers and tunnels. The inventive system allows one or more users to monitor the operation and performance of equipment located at multiple sites that can be geographically remote from the user. Various sensors and meters placed on or near the equipment constantly, or on demand, monitor a plurality of operating conditions and report the readings locally and remotely. In addition, operating process conditions and product characteristics such as product temperature, color, weight, and bacteriological state can be monitored. Sensor readings that exceed a predetermined standard result in the generation of an alarm signal, whether audible, visible, electronic, logged, or some combination thereof. These alarm indicators can be displayed or sounded locally and remotely to advise the responsible personnel that potential problems may exist. Out-of-range conditions can also trigger an automated response whereby the operating controls of the equipment are automatically adjusted in response to the sensor readings. Monitoring and operational access to the system is provided across a series of networks, computers, and graphical user interfaces to provide authorized users a measured and secured access to the monitoring accomplished by the inventive system, the information captured by the system, and the remote controlling facilitated by the system. The security is provided not only by password-controlled access but also by the encryption of transmitted information and by the restriction of access and control based on the location from which access is sought.
Servicing and maintenance of the equipment, whether scheduled or triggered by an alarm condition, can be managed remotely by communication links and remote information files that permit remote monitoring and instructing of the servicing operations occurring at the equipment site. Both remote and local service personnel have secured access to historical data and ideal operating conditions related to the equipment. The degree of access is based on each person's respective level of authorization, either through personal logon identifications or through their respective points of entry into the system.
Exemplary embodiments of the invention are directed toward a system and method for remote monitoring of equipment, including the steps of generating sensor readings from at least one sensor on a piece of equipment; transmitting the sensor readings to a processor; processing the transmitted sensor readings against a predetermined standard to determine whether any transmitted sensor readings violate the standard; and automatically transmitting a signal to the equipment site should any of the transmitted sensor readings violate the standard.
As a further feature of the present invention, the sensor measures one or more of equipment operating conditions, equipment environmental conditions, and product characteristics; and the sensor readings are transmitted to a processor remote from the equipment location. Access to the transmitted sensor readings is limited based on one or more of user logon identifier, user status identifier, and user processor location.
An alternative embodiment of the invention is directed toward a system and method for a method for automated control of equipment, including determining desired performance standards for a piece of equipment; generating sensor readings from the piece of equipment; comparing the generated sensor readings against the desired performance standards; transmitting commands to set operating controls on the equipment should the generated sensor readings violate the desired performance standards, wherein the transmitted commands are determined based on prior sensor readings and operating control settings from like pieces of equipment and wherein the transmitted commands automatically set operating controls on the piece of equipment such that the desired performance standards are achieved.
As a further feature of the present invention, the determined performance standards include operating control settings, recorded at the central location, known to achieve certain sensor readings on like equipment.


REFERENCES:
patent: 4847894 (1989-07-01), Chanvin et al.
patent: 5225997 (1993-07-01), Lederer et al.
patent: 5460006 (1995-10-01), Torimitsu
patent: 5946922 (1999-09-01), Viard et al.
patent: 6097429 (2000-08-01), Seeley et al.
patent: 6437691 (2002-08-01), Sandelman et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for remote management of equipment... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for remote management of equipment..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for remote management of equipment... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3184833

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.