System and method for reinforcing bone in preparation for...

Surgery – Instruments – Orthopedic instrumentation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06752809

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to a bone reinforcement process and surgical tool for, and more particularly, the present invention relates to an application device for injecting poly methyl methacrylate into a bone matrix through a canulated element through which a screw may subsequently be inserted.
BACKGROUND OF THE INVENTION
The bones and connective tissue of an adult human spinal column consists of an upper portion having more than 20 discrete bones, and a lower portion which consists of the sacral bone and the coccygeal bodies. The bones of the upper portion are generally similar in shape, however, they do vary substantially in size in accordance with their individual position along the column and are, therefore, anatomically categorized as being members of one of three classifications: cervical, thoracic, or lumbar.
These similarly shaped bones vary in size, but are each similarly coupled to the next by a tri-joint complex. The trijoint complex consists of an anterior disc and the two posterior facet joints, the anterior discs of adjacent bones being cushioned by cartilage spacers referred to as intervertebral discs. The posterior portion of the vertebral bone is coupled to the anterior portion by a pair of bone bridges referred to as pedicles, between which the spinal canal is housed.
In its entirety, the spinal column is highly complex in that it houses and protects critical elements of the nervous system which have innumerable peripheral nerves and arterial and veinous bodies in close proximity. In spite of these complexities, the spine is a highly flexible structure, capable of a high degree of curvature and twist through a wide range of motion.
Genetic or developmental irregularities, trauma, chronic stress, tumors, and disease, however, can result in spinal pathologies which either limit this range of motion, or which threaten the critical elements of the nervous system housed within the spinal column. A variety of systems have been disclosed in the art which achieve this immobilization by implanting artificial assemblies in or on the spinal column. These assemblies may be classified as anterior, posterior, or lateral implants. As the classification suggests, posterior implants are attached to the back of the spinal column, generally hooking under the lamina and entering into the central canal, attaching to the transverse process, or coupling through the pedicle bone. Lateral and anterior assemblies are coupled to the vertebral bodies.
The region of the back which needs to be immobilized, as well as the individual patient's anatomy, determine the appropriate surgical protocol and implantation assembly. Because the spine is routinely subject to high loads which cycle during movement, primary concerns of physicians performing spinal implantation surgeries focus on screw pull-out and screw failure. Screw pull-out occurs when the cylindrical portion of the bone which surrounds the inserted screw fails. Screw pull-out often an additional danger in that it often leaves the bone into which the screw was implanted completely useless with respect to continued implant support. This is especially true when the patient suffers from osteoporosis. In such patients the bone matter is often much less structurally supportive and lacks the necessary holding strength to prevent macromotion of the screws which may be implanted therein, thus severely limiting the immobilization potential of the assembly.
The use of artificial materials, such as bone cements and specific organic bone mimicking compounds such as poly methy methacrylate (PMMA), have been taught in the art as being effective in strengthening the osteoporotic bones to effect better immobilization of the screws. Percutaneous insertion of bone reinforcing agents has been successful in many instances, and is generally known as vertebroplasty. This “closed” use of PMMA and/or bone cement is useful in supporting subsiding bone masses in some instances, but is insufficient in those cases in which pedicle screw support is required. One of the failings of vertebralplasty, however, is that the cured PMMA/bone cement is often so much more dense and hard than the surrounding natural bone material that if subsequent screws need to be inserted, the bone drill is confounded by the difference in material properties.
The “open” use of PMMA and/or bone cement has been thought of as an alternative to “closed” use, especially when posterior implants are expected to be utilized. In such an instance, the patient's posterior spine is exposed and a bone drill is used to bore a hole through the pedicles for the posterior assembly to be implanted. Prior to the screws being implanted, however, the surgeon injects a quantity of PMMA/bone cement into the hole. Subsequently, the screw is inserted into the hole with the uncured cement. As the cement harden around the threads of the screw, however, the screw becomes thoroughly incarcerated in the hole, and is thus irretrievable. This presents a significant problem for potential revision surgery as well as being a cumbersome and time sensative process (as the PMMA/bone cement must not dry before the screw is implanted.
It is, therefore, the principal object of the present invention to provide a bone cement injector system for use in spine surgery wherein the surgeon has the ability to assemble the bone cement injectors without the time pressure of inserting the screws exactly after the material has been inserted.
It is also an object of the present invention to provide a bone cement injector system for use in spine surgery wherein the surgeon has the ability to insert the pedicle screws into a dried bone cement cavity which will support, but not incarcerate the screw against removal if necessary.
Other objects of the present invention not explicitly stated will be set forth and will be more clearly understood in conjunction with the descriptions of the preferred embodiments disclosed hereafter.
SUMMARY OF THE INVENTION
The preceding objects are achieved by the present invention, which is a system and method for reinforcing bone in preparation for screw implantation. A system of the invention in one embodiment comprises a threaded cannula having a central bore and a perforated distal end, a cannula applicator that is insertable into the central bore and which achieves a friction fit within the central bore, a plunger that is insertable into the central bore and which achieves an intimate fit within the central bore (the plunger having a guide wire passing through its central longitudinal axis), bone cement, and a cannulated drill bit. A method of the invention in one embodiment comprises drilling and tapping a hole in a vertebral body, inserting the applicator into the central bore of the cannula, screwing the cannula into the tapped hole by rotating the applicator, removing the applicator, injecting the bone cement into the central bore, distributing the bone cement out the holes in the distal end of the cannula and into the surrounding bone using the plunger, letting the bone cement harden, and drilling out the plunger using the cannulated drill following the guide wire. Thereafter, the surgeon can re-tap the hole and insert a bone screw into the reinforced vertebral body.
More particularly, a cannula of the invention has an elongated cylindrical body with a central bore, the body having a proximal end providing access to the bore (especially access by a cannula applicator, plunger, syringe and drill bit of the present invention, as described in greater detail below), and a distal end that is perforated. The outer surface of the cannula is threaded for engagement with threads of a tapped drill hole and to restrict proximal migration of the bone cement, as described in greater detail below. The cannula should be formed from biocompatible material (e.g., poly methyl methacrylate) inasmuch as it will become incarcerated into the target vertebral body in accordance with the procedures described herein. Preferably, the cannula has a radiodense tip that can be used to aid th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for reinforcing bone in preparation for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for reinforcing bone in preparation for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for reinforcing bone in preparation for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3338290

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.