System and method for refining liposuctioned adipose tissue

Chemistry: molecular biology and microbiology – Process of utilizing an enzyme or micro-organism to destroy... – Treating animal or plant material or micro-organism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S325000, C435S371000, C435S271000, C435S297100, C435S304100, C435S308100, C210S446000, C210S772000

Reexamination Certificate

active

06316247

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a method and system for refining tissue. In particular, the present invention relates to a method and system for separation, washing and refinement of adipose tissue from liposuctioned effluent.
BACKGROUND OF THE INVENTION
Autologous adipose tissue transplantation is performed by many surgeons for various cosmetic and reconstructive procedures, particularly those relating to the face, hands and other areas. Public confidence in and comfort with synthetic materials (e.g., silicone and teflon) and foreign tissues (e.g., bovine collagen) has declined. Conversely, the interest in and demand for autologous adipose tissue transplantation has risen.
Autologous fat transplantation involves the procurement of adipose tissue by liposuction techniques from an area of abundance, and re-injection of the harvested adipose tissue into a different site of the same individual for cosmetic/reconstructive augmentation or enhancement purposes. Generally, adipose tissue must be as ‘clean’ or refined as possible before re-introduction to maximize the chances of graft survival. Such refinement preferably is done with as little exposure of the tissue to air as possible (i.e., “anaerobic tissue handling”).
Unfortunately, the nature of liposuction procedures preclude easy tissue isolation after initial harvest (especially on a large scale) because the volume and/or viscosity of ‘raw’ liposuction effluent also contains unwanted components, e.g., oil, blood and anesthetic solution. Currently, there are no standard techniques, methods, or devices that exist for the simple, large scale isolation and refinement of liposuction-harvested adipose tissue. Although patented cannulas, needles and methods for tissue harvest and preparation exist, these techniques are tedious, inefficient and require a pseudo-sterile centrifugation step.
Several devices exist for the isolation of certain cells. For example, U.S. Pat. Nos. 5,035,708 and 5,372,945, issued to Alchas et al., describe an endothelial cell procurement and deposition kit and a device and method for collecting and processing fat tissue and procuring microvessel endothelial cells to produce endothelial cell products. Further, U.S. Pat. No. 5,409,833, issued to Hu et al., discloses a microvessel cell isolation apparatus, U.S. Pat. No. 5,330,914, issued to Uhlen et al., discloses a method for extrapolating extrachromosomal DNA, and U.S. Pat. No. 5,610,074, issued to Beritashvili et al., discloses a centrifuge for separating multiple substances from a mixture. Finally, U.S. Pat. No. 5,786,207, issued to Katz et al., discloses a device for separating adipose tissue.
The present invention, however, is superior to existing inventions. It offers a simpler design, material and manufacturing methodology. Further, none of the devices disclosed above addresses the special concerns presented by working with adipose tissue and preparing it for immediate autologous adipose tissue transplantation, explant culture endeavors or cell dissociations. Thus, although various techniques and devices for cell separation are well documented in the literature, a need exists for a device and method that is more expeditious, efficacious, accessible and practical than current devices and methods.
SUMMARY OF THE INVENTION
The present invention consists of two containers. The first container is a flexible container that houses a second flexible container. The outer flexible container is non-porous and water-tight but the inner flexible container is porous. At the top of the device is at least one “tissue inlet” port that is contiguous with the inner flexible container and has a means for sealing it off from the outside environment. The tissue inlet port enables the introduction of liposuction material and possibly solutions into the inner flexible container. At another section of the device is at least one outlet port that is contiguous with only the outer flexible container and has means for sealing the outlet port that allows for quick and easy efflux of waste.
A description of the method for separating adipose tissue for autologous tissue transplantation is as follows. Liposuctioned tissue removed from the patient is transferred into the device through the inlet port that is contiguous with the inner flexible porous container. Pieces of adipose tissue are “trapped” within the inner flexible container whereas waste components (free oil, blood, serum) are able to drain through the pores and out the outlet port. After all the desired liposuction effluent is transferred, the trapped tissue may be rinsed thoroughly with saline or buffer. For very thorough cleansing, the outlet port is sealed, buffer is added, and the inlet port is sealed. The device is agitated to encourage thorough rinsing of the tissue. Next, the device is held upright and the bottom outlet port unsealed to allow for drainage of waste or active suction of the effluent. This step can be repeated several times as necessary to achieve tissue that is highly “purified”. Finally, the washed tissue can be expressed from the inner flexible container by ‘rolling’ the tissue out through the inlet port (from bottom to top) into receptacles, e.g., syringes, for re-implantation or any other desired receptacle for further preparation before injection. Alternatively, a receptacle can be attached directly to the port such that the tissue can be anaerobically re-injected into the body.
In addition to the immediate clinical application, this present invention maintains the ability to support enzymatic dissociation of adipose tissue into its cellular components for use by individuals engaged in cell-based science, developmental biology, tissue engineering research and genetic engineering.
It is an object of this invention to provide a more efficient, versatile, cost-effective, sterile method and system for refining adipose tissue samples for immediate transplantation.
It is an object of this invention to provide a disposable device for the refinement of adipose tissue.
It is also an object of this invention to provide a more efficient, cost-effective, sterile method and system that overcomes the deficiencies of prior devices and systems for the refinement of adipose tissue for autologous adipose transplantation.
It is an object of this invention to allow a surgeon who is performing liposuction to harvest tissue for autologous adipose transplantation to rapidly, easily, efficiently and sterilely isolate adipose tissue from the other unwanted waste components that are associated with primary liposuction effluent.
Other objects and advantages of the present invention will become apparent from perusing the following detailed description of presently preferred embodiments taken in conjunction with the accompanying drawings.


REFERENCES:
patent: 5372945 (1994-12-01), Alchas et al.
patent: 5409833 (1995-04-01), Hu et al.
patent: 5586732 (1996-12-01), Yamauchi et al.
patent: 5786207 (1998-07-01), Katz et al.
patent: 5968356 (1999-10-01), Morsiani et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for refining liposuctioned adipose tissue does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for refining liposuctioned adipose tissue, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for refining liposuctioned adipose tissue will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2600188

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.