System and method for providing device-aware services in an...

Telephonic communications – Special services – Provisioning

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S088170, C370S215000, C370S217000

Reexamination Certificate

active

06687356

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field of the Invention
The present invention relates to telecommunication systems and, more particularly, to a system and method for providing device-aware services in a telecommunications network such as, for example, a hybrid network having a packet-switched network (PSN) portion that is operable with the Internet Protocol (IP).
2. Description of Related Art
Several advances are currently taking place in the field of telecommunications networks. One of the most significant developments is using packet-switched network (PSN) infrastructures (e.g., those based on IP addressing) as a replacement for, or as an adjunct to, the existing circuit-switched network (CSN) infrastructures used in today's telephony. The benefits of using or adding PSNs for telephony are well known: from the network operators' perspective, the inherent traffic aggregation in packet-switched infrastructures allows for a reduction in the cost of transmission and the infrastructure cost per end-user. Ultimately, such cost reductions enable the network operators to pass on the concomitant cost savings to the end-users.
Some of the market drivers that impel the existing Voice-over-IP (VoIP) technology are: improvements in the quality of IP telephony; the Internet phenomenon; emergence of standards; cost-effective price-points for advanced services via media-rich call management, et cetera. Some of the well known emerging standards in this area are, for example, the H.323 protocol developed by the International Telecommunications Union (ITU), Session Initiation Protocol (SIP), developed by the Internet Engineering Task Force (IETF), etc. Using these protocols, devices such as personal computers can inter-operate seamlessly in a vast inter-network, sharing a mixture of audio, video, and data across all forms of PSNs which may interface with CSN portions.
As is well known in the telecommunications industry, services and service provisioning are among the principal purposes of a telecommunications network, including VoIP networks. Services are typically categorized into (i) “basic services” (i.e., services which allow basic call processes such as call establishment and termination) or (ii) “advanced services” which are also commonly referred to as Valued-Added Services (VAS). Examples of advanced services include split charging, 800-services, credit card calls, call forwarding, hunt group, et cetera. It is also well known that advanced services operate as factors for market differentiation and are crucial for network operators' (and/or service providers') success.
Those skilled in the art should appreciate that although advanced telecommunications networks of today (whether PSN-only or hybrid networks having several legacy CSNs with interoperable interfaces towards IP-based networks) support myriad communications devices and provide a broad range of services, several drawbacks and shortcomings exist in the state-of-the-art service provisioning schemes. For instance, a subscriber cannot access the same set of services and service data with different devices (e.g., mobile phone, mobile phone, IP phone, etc.).
In addition, mechanisms for specifying service policies with respect to the devices used by a subscriber in today's hybrid networks are inflexible and, therefore, are poorly optimized for devices being developed in the context of IP-based telephony. That is, although an end-user can specify policies on a device basis with respect to some of the services for which he has a subscription, the policy of each device is typically implemented using its dedicated service infrastructure (e.g., a Wireless Intelligent Network or WIN) in the network to which the device is attached. As a consequence, the relationship between service policies and devices is provided as a static association wherein it is not possible to define service policies for dynamically allocable devices (e.g., an IP host device or a device that can be personalized by using a Subscriber Identity Module (SIM), and the like).
Based on the foregoing, it should be apparent that there has arisen an acute need for a robust device-aware service provisioning solution for use within the context of the burgeoning VoIP technology which overcomes these and other shortcomings and deficiencies of the state-of-the-art.
SUMMARY OF THE INVENTION
Accordingly, the present invention advantageously provides a device-aware service provisioning scheme for use in a hybrid/integrated telecommunications network having an IP-based PSN portion and one or more CSN portions such as, e.g., a POTS portion, a wireless network portion, etc. A user profile is provided which partitions a service in three dimensions: a user-specific service part, a device-specific service part, and a combination part which specifies service conditions when an end-user uses a particular device or terminal. A common IP telephony VAS infrastructure is included wherein device-aware service triggers are provided.
Before processing a call (originating or terminating), a service switching node retrieves the user profile which includes the device-aware service triggers. While processing a call, upon encountering an armed detection point, the service switching node generates an appropriate device-aware trigger which will fire the execution of any relevant service logic program(s) in the service node.
In a further aspect, the present invention is directed to a device-aware call diversion method for use in an integrated telecommunications network having a service switching node and a service node. Before processing a call (originating or terminating), the service switching node retrieves the user profile which includes the device-aware service triggers. While processing a call, upon encountering an armed detection point, the service switching node generates an appropriate device-aware trigger which will fire the execution of any relevant service logic program(s) in the service node. Preferably, a device-specific service part of the user profile specifies service triggers applicable to a particular device designated for use by the user with respect to call diversion. Thereafter, upon executing the appropriate service logic program responsive to the device-aware trigger from the service switching node, the service node subsequently transmits a routing number to the service switching node which is used for diverting the call by the service switching node.
In yet further aspect, the present invention is directed to a hybrid telecommunications network having a PSN portion and a CSN portion that provides device-aware services. A plurality of heterogeneous communication devices operable with a host of protocols are included the hybrid telecommunications network. A service switching node is provided for invoking a device-aware service based on a device-aware service trigger encountered in a call control process. The hybrid telecommunications network also comprises a trigger server containing a user profile which includes a user-specific service part, a device-specific service part, and a combination service policy part that is applicable when an end-user uses a select device of the plurality of communication devices. Before processing a call (originating or terminating), the service switching node retrieves the user profile which includes the device-aware service triggers. While processing a call, upon encountering an armed detection point, the service switching node generates an appropriate device-aware trigger which will fire the execution of any relevant service logic program(s) in the service node. The service switching node accordingly transmits a service request to a service node in the network, based on the device-aware service trigger information obtained from the trigger server. The service node accordingly executes the service logic program based on the service information obtained from the service switching node.


REFERENCES:
patent: 5812865 (1998-09-01), Theimer et al.
patent: 5920820 (1999-07-01), Qureshi et al.
patent: 5946386 (1999-08-01), Rog

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for providing device-aware services in an... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for providing device-aware services in an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for providing device-aware services in an... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3349451

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.